Skip to main content
Log in

Microencapsulation methods for delivery of protein drugs

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recent advances in recombinant DNA technology have resulted in development of many new protein drugs. Due to the unique properties of protein drugs, they have to be delivered by parenteral injection. Although delivery of protein drugs by other routes, such as pulmonary and nasal routes, has shown some promises, to date most protein drugs are administered by parenteral routs. For long-term delivery of protein drugs by parenteral administration, they have been developed, and the currently used microencapsulation methods are reviewed here. The microencapsulation methods have been divided based on the method used. They are: solvent evaporation/extraction; phase separation (coacervation); spray drying; ionotropic gelation/polyelectrolyte complexation; interfacial polymerization; and supercritical fluid precipitation. Each method is described for its applications, advantages, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thies, C. (1996) A survey of microencapsulation processes. pp. 1–19. In: S. Benita (ed.).Microencapsulation: Methods and Industrial Applications. Marcel Dekker, Inc., New York, USA.

    Google Scholar 

  2. Wang, H. T., E. Schmitt, D. R. Flanagan, and R. J. Linhardt (1991) Influence of formulation methods on the in vitro controlld release of protein from poly(ester) microspheres.J. Controlled Release 17: 23–32.

    CAS  Google Scholar 

  3. Pradhan, R. S. and R. C. Vasavada (1994) Formulation and in vitro release study on poly(DL-lactide) microspheres containing hydrophilic compounds: glycine homopeptides.J. Controlled Release 30: 143–154.

    CAS  Google Scholar 

  4. Uchida, T., A. Yagi, Y. Oda, and S. Goto (1996) Microencapsulation of ovalbumin in poly(lactide-co-glycolide) by an oil-in-oil (o/o) solvent evaporation method.J. Microencapsulation 13: 509–518.

    CAS  Google Scholar 

  5. Morita, T., Y. Sakamura, Y. Horikiri, T. Suzuki, and H. Yoshino (2000) Protein encapsulation into bioegradable microspheres by a novel S/O/W emulsion method using poly(ethylene glycol) as a protein micronization adjuvant.J. Controlled Release 69: 435–444.

    CAS  Google Scholar 

  6. Kawasima, Y., H. Yamamoto, H. Takeuchi, and Y. Kuno (2000) Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of lecatonin.Pharm. Develop. Technol. 5: 77–85.

    Google Scholar 

  7. Kawashima, Y., H. Yamamoto, H. Takeuchi, S. Fujioka, and T. Hino (1999) Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolyer (PLGA) nanospheres to prolong hypoglycemic effect.J. Controlled Release 62: 279–287.

    CAS  Google Scholar 

  8. Ogawa, Y., H. Okada, M. Yamamoto, and T. Shimamoto (1988) In vivo release of leuprolide acetate from microcapsules prepared with polylactic acids or copoly(lactic/glycolic) acids and in vivo degradation of these polymers.Chem. Pharm. Bull. 36: 2576–2581.

    CAS  Google Scholar 

  9. Okada, H., T. Heya, Y. Ogawa, and T. Shimamoto (1988) One-month release injectable microcapsules of a luteinizing hormone-releasing hormone agonist (leuprolide acetate) for treating experimental endometriosis in rats.J. Pharmacol. Exp. Ther. 244: 744–750.

    CAS  Google Scholar 

  10. Lu, W. and T. G. Park (1995) Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problems.PDA J. Pharm. Sci. Technol. 49: 13–19.

    CAS  Google Scholar 

  11. Igartua, M., R. M. Hernandez, A. Esquisabel, A. R. Gascon, M. B. Calvo, and J. L. Pedraz (1997) Influence of formulation variables on thein-vitro release of albumin from biodegradable microparticulate systems.J. Microencapsulation 14: 349–356.

    Article  CAS  Google Scholar 

  12. Cleland, J. L., A. Mac, B. Boyd, J. Yang, E. T. Duenas, D. Yeung, D. Brooks, C. Hsu, H. Chu, V. Mukku, and A. J. S. Jones (1997) The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres.Pharm. Res. 14: 420–425.

    CAS  Google Scholar 

  13. Sturesson, C. and J. Carlfos (2000) Incorporation of protein in PLG-microspheres with retention of bioactivity.J. Controlled Release 67: 171–178.

    CAS  Google Scholar 

  14. Morlock, M., H. Koll, G. Winter, and T. Kissel (1997) Microencapsulation of rh-erythropoietin, using biodegradable poly(D,L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients.Eur. J. Pharm. Biopharm. 43: 29–36.

    CAS  Google Scholar 

  15. Bezemer, J. M., R. Radersma, D. W. Grijpma, P. J. Dijkstra, C. A. van Blitterswijk, and J. Feijen (2000) Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. Influence of preparation techniques on particle characteristics and protein delivery.J. Controlled Release 67: 233–248.

    CAS  Google Scholar 

  16. Bezemer, J. M., R. Radersma, D. W. Grijpma, P. J. Dijkstra, C. A. van Blitterswijk, and J. Feijen (2000) Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 2. Modulation of release rate.J. Controlled Release 67: 249–260.

    CAS  Google Scholar 

  17. Morlock, M., T. Kissel, Y. X. Li, H. Koll, and G. Winter (1998) Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties.J. Controlled Release 56: 105–115.

    CAS  Google Scholar 

  18. Sah, H. (1999) Stabilization of proteins against methylene chloride/water interface-induced denaturation and aggregation.J. Controlled Release 58: 143–151.

    CAS  Google Scholar 

  19. Gombotz, W. R., M. S. Healy, and L. R. Brown (1991) Very low temperature casting of controlled release microspheres,US Patent 5,019,400.

  20. Ting, T., I. Gonda, and E. M. Gripps (1992) Microparticles of PVA for nasal delivery. I. Generation by spray-drying and spray-desolvation.Pharm. Res. 9: 1330–1335.

    CAS  Google Scholar 

  21. Sam, A. P., F. D. Haan, and C. Dirix (1994) A novel process for manufacturing PLG microparticles by spray desolvation avoiding the use of toxic solvents.Proc. Int. Symp. Controlled Release Bioact. Mater., June 27–30. Nice, France.

  22. Tracy, M. A. (1998) Development and scale-up of a microsphere protein delivery system.Biotechnol. Prog. 14: 108–115.

    CAS  Google Scholar 

  23. Johnson, O. L., J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. Jones, and S. D. Putney (1996) A month-long effect from a single injection of microencapsulated human growth hormone.Nat. Med. 2: 795–799.

    CAS  Google Scholar 

  24. Johnson, O. L., W. Jaworowicz, J. L. Cleland, L. Bailey, M. Charnis, E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last, A. J. S. Jones, and S. D. Putney (1997) The stabilization and encapsulation of human growth hormone into biodegradable microspheres.Pharm. Res. 14: 730–735.

    CAS  Google Scholar 

  25. Cleland, J. L., O. L. Johnson, S. Putney, and A. J. S. Jones (1997) Recombinant human growth hormone poly-(lactic-co-glycolic acid) microsphere formulation development.Adv. Drug Delivery Rev. 28: 71–84.

    CAS  Google Scholar 

  26. Lee, H. J., G. Riley, O. Johnson, J. L. Cleland, N. Kim, M. Charnis, L. Bailey, E. Duenas, A. Shahzamani, M. Marian, A. J. Jones, and S. D. Putney (1997)In vivo characterization of sustained-release formulations of human growth hormone.J. Pharmacol. Exp. Ther. 281: 1431–1439.

    CAS  Google Scholar 

  27. Johnson, O. L. and M. A. Tracy (1999) Peptide and protein drug delivery. pp. 816–833. In: E. Mathiowitz (ed.).Encyclopedia of Controlled Drug Delivery. Jone Wiley & Sons Inc., New York, USA.

    Google Scholar 

  28. Nihant, N., S. Stassen, C. Grandfils, R. Jerome, and P. Teyssie (1994) Microencapsulation by coacervation of PLGA: III. Characterization of the final microspheres.Polym. Int. 34: 289–299.

    CAS  Google Scholar 

  29. Kas, H. S. and L. Oner (2000) Microencapsulation using coacervation. pp. 301–328. In: D. L. Wise (ed.),Handbook of Pharmaceutical Controlled Release Technology. Marcel Dekker, Inc., New York, USA.

    Google Scholar 

  30. Burgess, D. J. and A. J. Hickey (1994) Microsphere technology and applications. pp. 1–29. In: J. Swarbrick and J. C. Boylan (eds.).Encyclopedia of Pharmaceutical Technology. Marcel Dekker, Inc., New York, USA.

    Google Scholar 

  31. Wu, W. S. (1995) Preparation, characterization, and drug delivery applications of microspheres based on biodegradable lactic/glycolic acid polymers. pp. 1151–1200. In: D. L. Wise (ed.).Encyclopedic Handbook of Biomaterials and Bioengineering. Marcel Dekker, New York, USA.

    Google Scholar 

  32. Bakan, J. A. (1986) Microencapsulation. pp. 412–429. In: L. Lachman H. A. Lieberman, and J. L. Kanig (eds.).The Theory and Practice of Industrial Pharmacy. Lea & Febiger, Philadelphia, USA.

    Google Scholar 

  33. Sanders, L. M., J. S. Kent, G. I. McRae, B. H. Vickery, T. R. Tice, and D. H. Lewis (1984) Controlled release of LHRH analogue from PLGA microspheres.J. Pharm. Sci. 73: 1294–1297.

    CAS  Google Scholar 

  34. Ruiz, J. M., B. Tissier, and J. P. Bencit (1989) Microencapsulation of peptide: a study of the phase separation of PLGA copolymers 50/50 by silicone oil.Int. J. Pharm. 49: 69–77.

    Google Scholar 

  35. Ruiz, J. M. and J. P. Benoit (1991) In vivo peptide release from PLGA copolymer 50/50 microspheres.J. Controlled Release 16: 177–186.

    CAS  Google Scholar 

  36. Stassen, S., N. Nihant, V. Martin, C. Grandfils, R. Jerome, and R. Teyssie (1994) Microencapsulation by coacervation of PLGA: 1. Physicochemical characeristics of the phase separation process.Polymer 35: 777–785.

    CAS  Google Scholar 

  37. Nihant, N., C. Grandfils, R. Jerome, and P. Teyssie (1995) Microencapsulation by coacervation of PLGA: IV. Effect of the processing parameters on coacervation and encapsulation.J. Controlled Release 35: 117–125.

    CAS  Google Scholar 

  38. Thomasin, C., P. Johansen, R. Alder, R. Bemsel, G. Hottinger, H. Altorfer, A. D. Wright, G. Wehrli, H. P. Merkle, and B. Gander (1996) A contribution to over-coming the problem of residual solvents in biodegradable microspheres prepared by coacervation.Eur. J. Pharm. Biopharm. 42: 16–24.

    CAS  Google Scholar 

  39. Thomasin, C., G. Corradin, M. Ying, H. P. Merkle, and B. Gander (1996) Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-gly-colide) microspheres: Importance of polymer degradation and antigen release for immune response.J. Controlled Release 41: 131–145.

    CAS  Google Scholar 

  40. Li, J. K., N. Wang, and X. S. Wu (1997) A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery.J. Pharm. Sci. 86: 891–895.

    CAS  Google Scholar 

  41. Pettit, D. K., J. R. Lawter, W. J. Huang, S. C. Pankey, N. S. Nightlinger, D. H. Lynch, J. A. Schuh, P. J. Morrissey, and W. R. Gombotz (1997) Characterization of poly(glycolide-co-D,l-lactide)/poly(D,l-lactide) microspheres for controlled release of GM-CSF.Pharm. Res. 14: 1422–1430.

    CAS  Google Scholar 

  42. McGee, J. P., S. S. Davis, and D. T. O'Hagan (1995) Zero order release of protein from PLGA microparticles prepared using a modified phase separation technique.J. Controlled Release 34: 77–86.

    CAS  Google Scholar 

  43. Wang, N. and X. S. Wu (1998) A novel approach to stabilization of protein drugs in PLGA microspheres using agarose hydrogel.Int. J. Pharm. 166: 1–14.

    CAS  Google Scholar 

  44. Wang, N., X. S. Wu, and J. K. Li (1999) A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery.Pharm. Res. 16: 1430–1435.

    CAS  Google Scholar 

  45. Andrianov, A. K., J. Chen, and L. G. Payne (1998) Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions.Biomaterials 19: 109–115.

    CAS  Google Scholar 

  46. Brown, K. E., K. Leong, C. Huang, R. Dalal, G. D. Green, H. B. Haimes, P. A. Jimenez, and J. Bathon (1998) Gelatin/chondroitin 6-sulfate microspheres for the delivery of therapeutic proteins to the joint.Arthritis Rheum. 41: 2185–2195.

    CAS  Google Scholar 

  47. Thomasin, C., B. Gander, and H. P. Merkle (1993) Coacervation of biodegradable polyesters for microencapsulation: A physicochemical approach.Proc. Int. Symp. Controlled Release Bioact. Mater., July 25–30. Washington D.C., USA.

  48. Takada, S., Y. Uda, H. Toguchi, and Y. Ogawa (1995) Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers.PDA J. Pharm. Sci. Technol. 49: 180–184.

    CAS  Google Scholar 

  49. FDA (1999) Guidance for industry; Impurities: Residual solvents; VICH GL18.

  50. Jizomoto, H. (1985) Phase separation induced in gelatin-based coacervation systems by addition of water-soluble nonionic polymers. II: Effect of molecular weight.J. Pharm. Sci. 74: 469–472.

    CAS  Google Scholar 

  51. Jizomoto, H. (1984) Phase separation induced in gelatin-based coacervation systems by addition of water-soluble nonionic polymers: I. Microencapsulation.J. Pharm. Sci. 73: 879–882.

    CAS  Google Scholar 

  52. Giunchedi, P. and U. Conte (1995) Spray-drying as a preparation method of microparticulate drug delivery systems: an overview.S.T.P. Pharma Sci. 5: 276–290.

    Google Scholar 

  53. Pavanetto, E., B. Conti, I. Genta, and P. Giunchedi (1992) Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation.Int. J. Pharm. 84: 151–159.

    CAS  Google Scholar 

  54. Wan, L. S. C., P. W. S. Heng, and C. G. H. Chia (1992) Plasticizers and their effects on microencapsulation process by spray-drying in an aqueous system.J. Microencapsulation 9: 53–62.

    CAS  Google Scholar 

  55. Steber, W., R. Fishbein, and S. M. Cady (1989) Compositions for parenteral administration and their use.US Patent 4,837,381.

  56. Mathiowitz, E., H. Bernstein, S. Giannos, P. Dor, T. Turek, and R. Langer (1992) Polyanhydride microspheres. IV. Morphology and characterization of systems made by spray drying.J. Appl. Polym. Sci. 45: 125–134.

    CAS  Google Scholar 

  57. Gander, B., E. Wehrli, R. Alder, and H. P. Merkle (1995) Quality improvement of spray-dried, protein-loaded D,L-PLA microspheres by appropriate polymer solvent selection.J. Microencapsulation 12: 83–97.

    CAS  Google Scholar 

  58. Gander, B., P. Johansen, H. Nam-Tran and H. P. Merkle (1996) Thermodynamic approach to protein microencapsulation into poly(D,l-lactide) by spray drying.Int. J. Pharm. 129: 51–61.

    CAS  Google Scholar 

  59. Bittner, B., B. Ronneberger, R. Zange, C. Volland, J. M. Anderson, and T. Kissel (1998) Bovine serum albumin loaded poly(lactide-co-glycolide) microspheres: the influence of polymer purity on particle characteristics.J. Microencapsulation 15: 495–514.

    CAS  Google Scholar 

  60. Burgess, D. J. and S. Ponsart (1998) Beta-glucuronidase activity following complex coacervation and spray drying microencapsulation.J. Microencapsulation 15: 569–579.

    CAS  Google Scholar 

  61. Witschi, C. and E. Doelker (1998) Influence of the microencapsulation method and peptide loading on PLA and PLGA degradation during in vitro testing.J. Controlled Release 51: 327–341.

    CAS  Google Scholar 

  62. Bittner, B., M. Morlock, H. Koll, G. Winter, and T. Kissel (1998) Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics.Eur. J. Pharm. Biopharm. 45: 295–305.

    CAS  Google Scholar 

  63. Bittner, B. and T. Kissel (1999) Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.J. Microencapsulation 16: 325–41.

    CAS  Google Scholar 

  64. Baras, B., M. A. Benoit, and J. Gillard (2000) Parameters influencing the antigen release from spray-dried poly(Dl-lactide) microparticles.Int. J. Pharm. 200: 133–145.

    CAS  Google Scholar 

  65. Baras, B., M. A. Benoit, and J. Gillard (2000) Influence of various technological parameters on the preparation of spray-dried poly(epsilon-caprolactone) microparticles containing a model antigen.J. Microencapsulation 17: 485–498.

    CAS  Google Scholar 

  66. Takenaka, H., Y. Kawashima, and S. Y. Lin (1981) Polymorphism of spray-dried microencapsulated sulfamethoxazole with cellulose acetate phthalate and colloidal silica, montmorillonite, or talc.J. Pharm. Sci. 70: 1256–1260.

    CAS  Google Scholar 

  67. Bodmeier, R. and H. Chen (1988) Preparation of biodegradable polylactide microparticles using a spray-drying technique.J. Pharm. Pharmacol. 40: 754–757.

    CAS  Google Scholar 

  68. Lim, F. and A. M. Sun (1980) Microencapsulated islets as bioartificial endocrine pancreas.Science 210: 908–910.

    CAS  Google Scholar 

  69. Dulieu, C., D. Poncelet, and R.J. Neufeld (1999) Encapsulation and immobilization techniques. pp. 3–17. In: W. M. Kuhtreiber, R. P. Lanza, and W. L. Chick (eds.).Cell Encapsulation Technology and Therapeutics. Birkhauser, Boston, USA.

    Google Scholar 

  70. Acarturk, E. and S. Takka (1999) Calcium alginate microparticles for oral administration: II. Effect of formulation factors on drug release and drug entrapment efficiency.J. Microencapsulation 16: 291–301.

    CAS  Google Scholar 

  71. Peters, M. C., B. C. Isenberg, J. A. Rowley, and D. J. Mooney (1998) Release from alginate enhances the biological activity of vascular endothelial growth factor.J. Biomater. Sci. Polym. Ed. 9: 1267–1278.

    CAS  Google Scholar 

  72. Kikuchi, A., M. Kawabuchi, A. Watanabe, M. Sugihara, Y. Sakurai, and T. Okano (1999) Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights.J. Controlled Release 58: 21–28.

    CAS  Google Scholar 

  73. Thu, B., P. Bruheim, T. Espevik, O. Smidsrod, G. Skjak-Braek, and P. Soon-Shiong (1996) Alginate polycation microcapsules. I. Interaction between alginate and polycation.Biomaterials 17: 1031–1040.

    CAS  Google Scholar 

  74. Takka, S. and F. Acarturk (1999) Calcium alginate microparticles for oral administration: I. Effect of sodium alginate type on drug release and drug entrapment efficiency.J. Microencapsulation 16: 275–290.

    CAS  Google Scholar 

  75. Polk, A., B. Amsden, K. D. Yao, T. Peng, and M. F. A. Goosen (1994) Controlled release of albumin from chitosan-alginate microcapsules.J. Pharm. Sci. 83: 178–185.

    CAS  Google Scholar 

  76. Shiraishi, S., T. Imai, and M. Otagiri (1993) Controlled release of indomethacin by chitosan-polelectrolyte complex: optimization and in vivo/in vitro encapsulation.J. Controlled Release 25: 217–225.

    CAS  Google Scholar 

  77. Mi, F.-L., S.-S. Shyu, C.-Y. Kuan, S.-T. Lee, K.-T. Lu, and S.-E. Jang (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of Anticancer drug. I. Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer.J. Appl. Polym. Sci. 74: 1868–1879.

    CAS  Google Scholar 

  78. Fernandez-Urrusuno, R., P. Calvo, C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles.Pharm. Res. 16: 1576–1581.

    CAS  Google Scholar 

  79. Calvo, P., C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso (1997) Chitosan and chitosan/enthylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines.Pharm. Res. 14: 1431–1436.

    CAS  Google Scholar 

  80. Calvo, P., C. Remunan-Lopez, J. L. Vila-Jato, and M. J. Alonso (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers.J. Appl. Polym. Sci. 63: 125–132.

    CAS  Google Scholar 

  81. Aydin, Z. and J. Akbuga (1996) Chitosan beads for the delivery of salmon calcitonin: Preparation and release characteristics.Int. J. Pharm. 131: 101–103.

    CAS  Google Scholar 

  82. Long, D. D. (1996) Chitosan-carboxymethylcellulose hydrogels as supports for cell immobilization.J.M.S.-Pure Appl. Chem. A33: 1875–1884.

    Article  Google Scholar 

  83. Tomida, H., C. Nakamura, and S. Kiryu (1994) A novel method for the preparation of controlled release theophylline capsules coated with a polyelecrolyte complex of kappa-carrageenan and chitosan.Chem. Pharm. Bull. 42: 979–981.

    CAS  Google Scholar 

  84. Patil, R. T. and T. J. Speaker (2000) Water-based microsphere delivery system for proteins.J. Pharm. Sci. 89: 9–15.

    CAS  Google Scholar 

  85. Sriamornsak, P. and J. Nunthanid (1998) Calcium pectinate gel beads for controlled release drug delivery: I. Preparation and in vitro release studies.Int. J. Pharm. 160: 207–212.

    CAS  Google Scholar 

  86. Kedzierewicz, F., C. Lombry, R. Rios, M. Hoffman, and P. Maincent (1999) Effect of the formulation on the in-vitro release of propranolol from gellan beads.Int. J. Pharm. 178: 129–136.

    CAS  Google Scholar 

  87. Brissova, M., I. Lacik, A. C. Powers, A. V. Anilkumar, and T. Wang (1998) Control and measurement of permeability for design of microcapsule cell delivery system.J. Biomed. Mater. Res. 39: 61–70.

    CAS  Google Scholar 

  88. Lacik, I., M. Brissova, A. V. Anilkumar, A. C. Powers, and T. Wang (1998) New capsule with tailored properties or the encapsulation of living cells.J. Biomed. Mater. Res. 39: 52–60.

    CAS  Google Scholar 

  89. Bano, M. C., S. Cohen, K. B. Visscher, H. R. Allcock, and R. Langer (1991) A novel synthetic method for hybridoma cell encapsulation.Biotechnology 9: 468–471.

    CAS  Google Scholar 

  90. Cohen, S., M. C. Bano, K. B. Visscher, M. Chow, H. R. Allcock, and R. Langer (1990) Ionically cross-linkable polyphosphazene: a novel polymer for microencapsulation.J. Am. Chem. Soc. 112: 7832–7833.

    CAS  Google Scholar 

  91. Kwok, K. M., M. J. Groves, and D. J. Burgess (1991) Production of 5–15 μm diameter alginate-polylysine microcapsules by an air-atomization technique.Pharm. Res. 8: 341–344.

    CAS  Google Scholar 

  92. Gharapetian, H., N. A. Davis, and A. M. Sun (1986) Encapsulation of viable cells within polyacrylate membranes.Biotechnol. Bioeng. 28: 1595–1600.

    CAS  Google Scholar 

  93. Guiseley, K. B. (1989) Chemical and physical properties of algal polysaccharides used for cell immobilization.Enzyme Microb. Technol. 11: 706–716.

    CAS  Google Scholar 

  94. Lanza, R. R. and W. L. Chick (1997) Transplantation of encapsulated cells and tissues.Surgery 121: 1–9.

    CAS  Google Scholar 

  95. Bodmeier, R. and O. Paeratakul (1991) A novel multiple-unit sustained release indmethacin-hydroxypropyl methylcellulose delivery system prepared by ionotropic gelation of sodium alginate at elevated temperatures.Carbohydr. Polym. 16: 399–408.

    CAS  Google Scholar 

  96. Pillay, V. C., M. Dangor, T. Govender, K. R. Moopanar, and N. Hurbans (1998) Inotropic gelation: encapsulation of indomethacin in calcium alginate gel discs.J. Microencapsulation 15: 215–226.

    CAS  Google Scholar 

  97. Sezer, A. D. and J. Akbuga (1999) Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads.J. Microencapsulation 199: 195–203.

    Google Scholar 

  98. Hearn, E. and R. J. Neufeld (2000) Poly (methylene coguanidine) coated alginate as an encapsulation matrix for urease.Process Biochem. 35: 1253–1260.

    CAS  Google Scholar 

  99. Wang, T., I. Lacik, M. Brissova, A. V. Anikumar, A. Prokop, D. Hunkeler, R. Green, K. Shahrokhi, and A. C. Powers (1997) An encapsulation system for the immuno-isolation of pancreatic islets.Nat. Biotechnol. 15: 358–362.

    CAS  Google Scholar 

  100. Yang, H., R. James, and J. Wright (1999) Calcium alginate. pp. 79–89. In: W. M. Kuhtreiber, R. P. Lanza, and W. L. Chick (eds.),Cell Encapsulation Technology and Therapeutics. Birkhauser, Boston, USA.

    Google Scholar 

  101. Soon-Shiong, P., M. Otterlie, G. Skjak-Braek, O. Smidsrod, R. Heintz, R. P. Lanza, and T. Espevik (1991) An immunologic basis for the fibrotic reaction to implanted microcapsules.Transplant. Proc. 23: 758–759.

    CAS  Google Scholar 

  102. Clayton, H. A., N. J. M. London, P. S. Colloby, P. R. E. Bell, and R. F. L. James (1991) The effect of capsule composition on the biocompatibility of alginate-poly-l-lysine capsules.J. Microencapsulation 8: 221–233.

    CAS  Google Scholar 

  103. Shu, X. Z. and K. J. Zhu (2000) A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery.Int. J. Pharm. 201: 51–58.

    CAS  Google Scholar 

  104. Whateley, T. L. (1996) Microcapsules: preparation by interfacial polymerization and interfacial complexation and their application. pp. 349–375. In: S. Benita (ed.).Microencapsulation: Methods and Industrial Applications. Dekker, New York, USA.

    Google Scholar 

  105. Mathiowitz, E. and M. R. Kreitz (1999). Microencapsulation. pp. 493–546. In: E. Mathiowitz (ed.),Encyclopedia of Controlled Drug Delivery. Jone Wiley & Sons, Inc., New York, USA.

    Google Scholar 

  106. Watnasirichaikul, S., N. M. Davies, T. Rades, and I. G. Tucker (2000) Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions.Pharm. Res. 17: 684–689.

    CAS  Google Scholar 

  107. Debenedetti, P. G., J. W. Tom, S. Yeo, and G. Lim (1993) Application of supercritical fluids for the production of sustained delivery devices.J. Controlled Release 24: 27–44.

    CAS  Google Scholar 

  108. Knutson, B. L., P. G. Debenedetti, and J. W. Tom (1996) Preparation of microparticulates using supercritical fluids. pp. 89–125. In: S. Cohen and H. Bernstein (eds.),Microparticulate Systems for the Delivery of Proteins and Vaccines. Marcel Dekker, Inc., New York, USA.

    Google Scholar 

  109. Ghaderi, R., P. Artursson, and J. Carlfors (1999) Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS).Pharm. Res. 16: 676–681.

    CAS  Google Scholar 

  110. Tom, J. W., G.-B. Lim, P. G. Debenedetti, and R. K. Prud'homme (1993) Application of supercritical fluids in the controlled release of drugs. In: E. Kiran and J. E. Brennecke (eds.),ACS Symposium Series 514: Supercritical Fluid Engineering Science fundamentals and applications. American Chemical Society, Washington, D.C., USA.

    Google Scholar 

  111. Soppimath, K. S., T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski (2001) Biodegradable polymeric nanoparticles as drug delivery devices.J. Controlled Release 70: 1–20.

    CAS  Google Scholar 

  112. Debenedetti, P. G., J. W. Tom, and S. Yeo (1993) Supercritical fluids: A new medium for the formulation of particles of biomedical interest.Proc. Int. Symp. Controlled Release Bioact. Mater., July 25–30. Washington D.C., USA.

  113. Winters, M. A., B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson, and S. J. Prestrelski (1996) Precipitation of proteins in supercritical carbon dioxide.J. Pharm. Sci. 85: 586–594.

    CAS  Google Scholar 

  114. Randolph, T. W., A. D. Randolph, M. Mebes, and S. Yeung (1993) Sub-micrometer-sized biodegradable particles of PLA via the gas antisolvent spray precipitation process.Biotechnol. Prog. 9: 429–435.

    CAS  Google Scholar 

  115. Young, T.J., K.P. Johnston, K. Mishima, and H. Tanaka (1999) Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid anti-solvent.J. Pharm. Sci. 88: 640–650.

    CAS  Google Scholar 

  116. Bodmeier, R., H. Wang, D. J. Dixon, S. Mawson, and K. P. Johnston (1995) Polymeric microspheres prepared by spraying into compressed carbon dioxide.Pharm. Res. 12: 1211–1217.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinam Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeo, Y., Baek, N. & Park, K. Microencapsulation methods for delivery of protein drugs. Biotechnol. Bioprocess Eng. 6, 213–230 (2001). https://doi.org/10.1007/BF02931982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931982

Keywords

Navigation