Biotechnology and Bioprocess Engineering

, Volume 5, Issue 6, pp 387–394 | Cite as

The eukaryote alternative: Advantages of using yeasts in place of bacteria in microbial biosensor development

  • Richard M. Walmsley
  • Patrick Keenan


The relationship between Man and yeast has been a successful and enduring one. The characteristics of yeast have made it an ideal tool in scientific research and as such, it has been used extensively. In this review some of the advantages, methods and applications of yeasts in the biosensor field are outlined. In doing so, we propose a eukaryotic alternative to the current battery of bacteria-based microbial biosensors.


biosensor genotoxicity permeability sensitivity toxicity yeast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Parry, J. M. (1999). Use of tests in yeasts and fungi in the detection and evaluation of carcinogens. pp. 471–485. In: D. B. McGregor, J. M. Rice, and S. Venitt (eds.).The Use of Short- and Medium-term Tests for Carcinogens and Data on Genetic Effects in Carcinogenic Hazard Evaluation. International Agency for Research on Cancer (IARC) Scientific Publications.Google Scholar
  2. [2]
    Guillermond, A. (1920)The Yeasts (Translated by F. W. Tanner). J. Wiley, NY, USA.Google Scholar
  3. [3]
    Roman, H. (1981). Development of yeast as an experimental organism. pp. 1–10. In: N. Strathern, E. W. Jones, and J. R. Broach (eds).The Molecular Biology of the Yeast Saccharomyces; Life Cyclc and Inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  4. [4]
    Mortimer, R. K. (1993). Øvind Winge: Founder of yeast genetics. pp. 3–16. In: M. N. Hall and P. Lindner (eds.).The Early Days of Yeast Genetics. Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA.Google Scholar
  5. [5]
    Mortimer, R. K. (1993) Carl C. Lindegren: Iconoclastic father ofNeurospora and yeast genetics. pp. 17–38. In: M. N. Hall and P. Lindner (eds.).The Early Days of Yeast Genetics. Cold Spring Harbour Laboratory Press. Cold Spring Harbor, NY, USA.Google Scholar
  6. [6]
    Hawksworth, D. L. and J. Mouchacca (1994) Ascomycete systematics in the nineties. pp. 3–11. In: D. L. Hawksworth (ed.)Ascomycete Systematics: Problems and Perspectives in the Nineties. Plenum Press, NY, USA.Google Scholar
  7. [7]
    Walker, G. M. (1998)Yeast physiology and biotechnology. John Wiley & Sons Ltd. England.Google Scholar
  8. [8]
    Kaiser, C., S. Michaelis, and A. Mitchell (1994)Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. cold Spring Harbor Laboratory Press.Google Scholar
  9. [9]
    Siede, W. (1998) The genetics and biochemistry of the repair of UV-induced DNA damage inSaccharomyces cerevisiae. pp. 307–333. In: J. A. Nickoloff and M. F. Hoekstra (eds.)DNA Damage and Repair, Volume I: DNA Repair in Prokarvotes and Lower Eukaryotes. Humana Press, New Jersey, USA.Google Scholar
  10. [10]
    Beggs, J. D. (1978) Transformation of yeast by a replicating hybrid plasmid.Nature 275: 104–109.CrossRefGoogle Scholar
  11. [11]
    Hinnen, A., J. B. Hicks, and G. R. Fink (1978) Transformation of yeast.Proc. Natl. Acad. Sci. USA 75: 1929–1933.CrossRefGoogle Scholar
  12. [12]
    Coffeau, A., B. C. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver (1996) Life with 6000 genes.Science 274: 546–567.CrossRefGoogle Scholar
  13. [13]
    Oliver, S. G. (1996) A network approach to the systematic analysis of yeast gene function.Trends Genet. 12: 241–242.CrossRefGoogle Scholar
  14. [14]
    Staleva, L., L. Waltscheva, E. Golovinsky, and P. Venkov (1996) Enhanced cell permeability increases the sensitivity of a yeast test for mutagens.Mut. Res. Genet. Toxicol. 370: 81–89.Google Scholar
  15. [15]
    Terziyska, A., L. Waltschewa, and P. Venkov (2000) A new sensitive test based on yeast cells for studying environmental pollution.Environmental Pollution. 109: 43–52.CrossRefGoogle Scholar
  16. [16]
    Zimmermann, F. K. and A. Rohlfs (1991) The influence of solvent stress on MMS-induced genetic change in Saccharomyces cerevisiae.Mutat. Res. 250: 239–249.Google Scholar
  17. [17]
    Lees, N. D., B. Skaggs, R. D. Kirsch, and M. Bard (1995) Cloning of the late genes in the ergosterol biosynthetic-pathway of saccharomyces-cerevisiae: A review.Lipids 30: 221–226.CrossRefGoogle Scholar
  18. [18]
    Gaber, R. F., D. M. Copple, B. K. Kennedy, M. Vidal, and M. Bard (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol.Mol. Cell. Biol. 8: 3447–3456.Google Scholar
  19. [19]
    Dexter, D., W. S. Moyerowley, A. L. Wu, and J. Golin (1994) Mutations in the yeast PDR3, PDR4, PDR7 and PDR9 pleiotropic (multiple) drug-resistance loci affect the transcript level of an ATP binding cassette transporter encoding gene, PDR5.Genetics 136: 505–515.Google Scholar
  20. [20]
    Balzi, E. and A. Goffeau (1995) Yeast multidrug-resistance-the PDR network.J Bioenerg Biomembr 27: 71–76.CrossRefGoogle Scholar
  21. [21]
    Warit, S., N. S. Zhang, A. Short R. M. Walmsley, S. G. Oliver, and L. I. Stateva (2000) Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species.Mol. Microbiol. 36: 1156–1166.CrossRefGoogle Scholar
  22. [22]
    Gaido, K. W., L. S. Leonard, S. Lovell, J. C. Gould, D. Babai, C. J. Portier, and D. P. McDonnell (1997) Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay.Toxicol. Appl. Pharmacol. 143: 205–212.CrossRefGoogle Scholar
  23. [23]
    Rehmann, K., K. W. Schramm, and A. A. Kettrup (1999) Applicability of a yeast oestrogen screen for the detection of oestrogen-like activities in environmental samples.Chemosphere 38: 3303–3312.CrossRefGoogle Scholar
  24. [24]
    Beresford, N., E. J. Routledge, C. A. Harris, and J. P. Sumpter (2000) Issues arising when interpreting results from an in vitro assay for estrogenic activity.Toxicol. Appl. Pharmacol. 162: 22–33.CrossRefGoogle Scholar
  25. [25]
    MartinEsteban A., P. Fernandez, and C. Camera (1997) Baker's yeast biomass (Saccharomyces cerevisae) for selective on-line trace enrichment and liquid chromatography of polar pesticides in water.Anal. Chem. 69: 3267–3271.CrossRefGoogle Scholar
  26. [26]
    Findlay, J. (2000) The Guardian,4273,4023060,00.html. 23 June 2000.Google Scholar
  27. [27]
    Paladino, G., B. Weibel, and C. Sengstag (1999) Heterocyclic aromatic amine efficiently induce mitotic recombination in metabolically competentSaccharomyces cerevisiae strains.Carcinogenesis. 20: 2143–2152.CrossRefGoogle Scholar
  28. [28]
    Aryal, P., K. Yoshikawa, T. Terashita, F. P. Guengerich, T. Shimada, and Y. Oda (1999) Development of a new genotoxicity test system withSalmonella typhimurium OY1001/1A2 expressing human CYP1A2 and NADPH-P450 reductase.Mut. Res. Genet. Toxicol. Environ. Mutagen. 442: 113–120.CrossRefGoogle Scholar
  29. [29]
    Racel, J. (1991) A yeast biosensor for glucose determination.Appl. Microbiol. Biotechnol. 34: 473–477.Google Scholar
  30. [30]
    Kulys, J., L. Z. Wang, and V. Razumas (1992) Sensitive yeast bioelectrode to 1-lactate.Electroanalysis 4: 527–532.CrossRefGoogle Scholar
  31. [31]
    Corton, E. and G. Locascio (1998) Simple flow injection analysis system for determination of added sugars in dairy products.J. Dairy Res. 65: 675–680.CrossRefGoogle Scholar
  32. [32]
    Goldblum, D. K., S. E. Holodnick, K. H. Mancy, and D. E. Briggs (1991) Oxygen membrane-electrode used as a toxicity biosensor.Environ. Prog. 10: 24–29.CrossRefGoogle Scholar
  33. [33]
    Campanella, L., G. Favero, and M. Tomassetti (1995) Immobilized yeast-cells biosensor for total toxicity testing.Sci. Total Environment 171: 227–234.CrossRefGoogle Scholar
  34. [34]
    Campanella, L., G. Favero, D. Mastrofini, and M. Tomassetti (1996) Toxicity order of cholanic acids using an immobilised cell biosensor.J. Pharma Biomed. Anal. 14: 1007–1013.CrossRefGoogle Scholar
  35. [35]
    Campanella, L., G. Favero, D. Mastrofini, and M. Tomassetti (1997) Further developments in toxicity cell biosensors.Sensors Actuators B-Chemical 44: 279–285.CrossRefGoogle Scholar
  36. [36]
    Palmquist, E., C. B. Kriz, M. Khayyami B. Danielsson, P. O. Larsson, K. Mosbach, and D. Kriz (1994) Development of a simple detector for microbial-metabolism, based on a polypyrrole DC resistometric device.Biosensors Bioelectronics 9: 551–556.CrossRefGoogle Scholar
  37. [37]
    Hollis, R. P., K. Killham, and L. A. Glover (2000) Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes.Appl. Environ. Microbiol. 66: 1676–1679.CrossRefGoogle Scholar
  38. [38]
    Gu, M. B., P. S. Dhurjati, T. K. VanDyk, and R. A. LaRossa (1996) A miniature bioreactor for sensing toxicity using recombinant bioluminescentEscherichia coli cells.Biotechnol. Prog. 2: 393–397.CrossRefGoogle Scholar
  39. [39]
    Chen, J. R. and M. W. Griffiths (1996) LuminescentSalmonella: Strains as real time reporters of growth and recovery from sublethal injury in food.International J. Food Microbiol. 31: 27–43.CrossRefGoogle Scholar
  40. [40]
    van der Lelie D., L. Regniers, B. Borremans, A. Provoost, and L. Verschaeve (1997) The VITO-Tox test, a bioluminescentSalmonella typhimurium test to measure genotoxicity and toxicity test for the rapid screening of chemicals.Environ. Mol. Mut. 33: 240–248.Google Scholar
  41. [42]
    Li, Y. R. and J. Chu (1989) BOD measurement system with flowthrough electrode.Chin. J. Biotechnol. 5: 173–81.Google Scholar
  42. [43]
    Li, Y. R. and J. Chu (1991) Study of BOD microbial sensors for waste-water treatment control.Appl. Biochem. Biotechnol. 28: 855–863.CrossRefGoogle Scholar
  43. [44]
    Preininger, C., I. Klimant, and O. S. Wolfbeis (1994) Optical-fiber sensor for biological oxygen-demand.Anal. Chem. 66: 1841–1846.CrossRefGoogle Scholar
  44. [45]
    Yang, Z., H. Suzuki, S. Sasaki, and I. Karube (1996) Disposable sensor for biochemical oxygen demand.Appl. Microbiol. Biotechnol. 46: 10–14.CrossRefGoogle Scholar
  45. [46]
    Reiss, M., A. Heibges, J. Metzger, and W. Hartmeier (1998) Determination of BOD-values of starch-containing waste water by a BOD-biosensor.Biosensors Bioelectronics 13: 1083–1090.CrossRefGoogle Scholar
  46. [47]
    Neudorfer, F. and L. A. MeyerReil (1997) A microbial biosensor for the microscale measurement of bioavailable organic carbon in oxic sediments.Marine Ecology-Progress Series 147: 295–300.CrossRefGoogle Scholar
  47. [48]
    Riedel, K., M. Lehmann, K. Tag, R. Renneberg, and C. Kunze (1998)Arxula adeninivorans based sensor for the estimation of BOD.Anal. Lett. 31: 1–12.Google Scholar
  48. [49]
    Chan, C. Y., M. Lehmann, K. Tag, M. Lung, G. Kunze, K. Riedel, B. Gruendig, and R. Renneberg (1999) Measurement of biodegradable substances using the salt-tolerant yeastArxula adeninivorans for a microbial sensor immobilized with poly(carbamoyl) sulfonate (PCS) part I: Construction and characterization of the microbial sensor.Biosensors Bioelectronics 14: 131–138.CrossRefGoogle Scholar
  49. [50]
    Lehmann, M., C. Y. Chan, A. Lo, M. Lung, K. Tag, G. Kunze, K. Riedel, B. Gruendig, and R. Renneberg (1999) Measurement of biodegradable substances using the salt-tolerant yeastArxula adeninivorans for a microbial sen-sor immobilized with poly(carbamoyl)sulfonate (PCS)- Part II: Application of the novel biosensor to real samples from coastal and island regions.Biosensors Bioelectronics 14: 295–302.CrossRefGoogle Scholar
  50. [51]
    Sasaki, K., C. Iwanaga, K. Takeno, T. Hamaoka, and Y. Tsuchiya (1998) Development of a biosensor system for evaluation of good water for sake brewing.Seibutsu-Kogaku Kaishi-J. Soc. Ferment. Bioeng. 76: 51–57.Google Scholar
  51. [52]
    Chen, J. C., T. J. Naglak, and H. Y. Wang (1992) An amperometric alcohol sensor based on chemically permeabilized methylotrophic microorganisms.Biotechnol. Prog. 8: 161–164.CrossRefGoogle Scholar
  52. [53]
    Korpan, Y. I., M. V. Gonchar, N. F. Starodub, A. A. Shulga, A. A. Sibirny, and A. V. Elskaya (1993) A cell biosensor specific for formaldehyde based on pH-sensitive transistors coupled to methylotrophic yeast-cells with genetically adjusted metabolism.Anal. Biochem. 215: 216–222.CrossRefGoogle Scholar
  53. [54]
    Korpan, Y. I., A. P. Soldatkin, N. E. Starodub, A. V. Elskaya, M. V. Gonchar, A. A. Sibirny, and A. A. Shulga (1993) Methylotrophic yeast microbiosensor based on ionsensitive field-effect transistors for methanol and ethanol determination.Anal. Chim. Acta. 271.: 203–208.CrossRefGoogle Scholar
  54. [55]
    Korpan, Y. I., M. V. Gonchar, A. A. Sibirny, C. Martelet, A. V. El'skaya, T. D. Gibson, and A. P. Soldatkin (2000) Development of highly selective and stable potentiometric sensors for formaldehyde determination.Biosensors Bioelectronics 15: 77–83.CrossRefGoogle Scholar
  55. [56]
    Gonchar, M. V., A. A. Sibirnyi, Y. I. Korpan, N. E. Starodub, and A. V. Elskaya (1994) Methylotrophic yeast-cells as a bioactive component for sensor development. 1. Biochemistry of formaldehyde-induced acidification of the extracellular medium.Biochemistry-Moscow 59: 721–725.Google Scholar
  56. [57]
    Gonchar, M. V., M. N. Maidan, O. M. Moroz, J. R. Woodward, and A. A. Sibirny (1998) Microbial O-2- and H2O2-electrode sensors for alcohol assays based on the use of permeabilized mutant yeast cells as the sensitive bioelements.Biosensors Bioelectronics 13: 945–952.CrossRefGoogle Scholar
  57. [58]
    Alkasrawi, M., R. Nandakumar, R. Margesin, F. Schinner, and B. Mattiasson (1999) A, microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes.Biosensors Bioelectronics 14: 723–727.CrossRefGoogle Scholar
  58. [59]
    Ames, B. N., J. McCann, and E. Yamasaki (1975) Method for detecting carcinogens and mutagens with theSalmonella microsome mutagenicity test.Mut. Res. 31: 347–64.Google Scholar
  59. [60]
    Piegorsch, W. W., S. J. Simmons, B. H. Margolin, E. Zeiger, X. M. Gidrol, and P. Gee (2000) Statistical modeling and analyses of a base-specificSalmonella mutagenicity assay.Mut. Res. 467: 11–19.Google Scholar
  60. [61]
    Quillardet, P. and M. Hofflung (1993) The SOS chromotest: A review.Mut. Res. 297: 235–279.Google Scholar
  61. [62]
    Sabaliunas, D., J. R. Lazutka, and I. Sabaliuniene (2000) Acute toxicity and genotoxicity of aquatic hydrophobic pollutants sampled with semipermeable membrane devices.Environ. Poll. 109: 251–265.CrossRefGoogle Scholar
  62. [63]
    Nakamura, S. I., M. Ugawa, and H. Obana (1993) Genotoxicity of chlorine-treated amino-acids.Environ. Toxicol. Wat. Quality 8: 163–171.CrossRefGoogle Scholar
  63. [64]
    Oda, Y., H. Yamazaki, M. Watanabe, T. Nohmi, and T. Shimada (1995) Development of high-sensitiveumu test system-rapid detection of genotoxicity of promutagenic aromatic-amines bySalmonella-typhimurium strain nm2009 possessing high o-acetyltransferase activity.Mutation Research-Environmental Mutagenesis and Related Subjects 334: 145–156.CrossRefGoogle Scholar
  64. [65]
    Walmsley, R. M., N. Billinton, and W.-D. Heyer (1997) Green Fluorescent Protein as a reporter for the DNA damage-induced gene RAD54 fromSaccharomyces cerevisiae.Yeast 13: 1535–1545.CrossRefGoogle Scholar
  65. [66]
    Billinton, N., M. G. Barker, C. E. Michel, A. W. Knight, W.-D. Heyer, N. J. Goddard, P. R. Fielden, and R. M. Walmsley (1998) Development of a green fluorescent protein reporter for a yeast genotoxicity biosensor.Biosensors Bioelectronics 13: 831–838.CrossRefGoogle Scholar
  66. [67]
    Mehta, R. D. and R. C. von Borstel (1984) Genetic activity in yeast assays of reputed nonmutagenic, carcinogenic N0nitroso compounds and methapyrilene hydrochloride.IARC Scientific Publications 57: 721–729.Google Scholar
  67. [68]
    Albertini, S. and F. K. Zimmermann (1991) The detection of chemically-induced chromosomal malsegregation inSaccharomyces cerevisiae D61.m-a literature survey (1984–1990).Mut. Res. 258: 237–258.Google Scholar
  68. [69]
    Carls, N. and R. H. Schiestl (1994) Evaluation of the yeast DEL assay with 10 compounds selected by the international program on chemical safety for the evaluation of short-term tests for carcinogens.Mut. Res. 320: 293–303.CrossRefGoogle Scholar
  69. [70]
    Galli, A. and R. H. Schiestl (1998) Effect ofSalmonella assay negative and positive carcinogens on intrachromosomal recombination in S-phase arrested yeast cells.Mut. Res. Genet. Toxicol. Envirom. Mutagen. 419: 53–68.CrossRefGoogle Scholar
  70. [71]
    Afanassiev, V., M. Sefton, T. Anantachaiyong, M. C. Barker, R. M. Walmsley, and S. Wolfl (2000) Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances.Mut. Res. Genet. Toxicol. Environ. Mutagen. 464: 297–308.CrossRefGoogle Scholar
  71. [72]
    Knight, A. W., N. J. Goddard, P. R. Fielden, M. G. Barker, N. Billinton, and R. M. Walmsley (1999) Development of a flow-through detector for monitoring genotoxic compounds by quantifying the expression of green fluorescent protein in genetically modified yeast cells.Measurement Sci. Technol. 10: 211–217.CrossRefGoogle Scholar
  72. [73]
    Rydberg, B. and K. J. Johanson (1978) p. 465. In: P. C. Hanawalt, E. C. Friedberg, and C.F. Fox (eds.),DNA Repair Mechanisms. Academic Press, New York, USA.Google Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2000

Authors and Affiliations

  1. 1.Department of Biomolecular SciencesUMISTManchesterUK

Personalised recommendations