Biotechnology and Bioprocess Engineering

, Volume 4, Issue 1, pp 26–31 | Cite as

Effective production of chitinase and chitosanase byStreptomyces griseus HUT 6037 using colloidal chitin and various degrees of deacetylation of chitosan

  • Ho Sup Jung
  • Jeong Woo Son
  • Hong Seok Ji
  • Kwang Kim


The advantages of the organismStreptomyces griseus HUT 6037 is that the chitinase and chitosanase using chitinaceouse substrate are capable of hydrolyzing both amorphous and crystalline chitin and chitosan. We attempted to investigate the optimization of induction protocol for high-level production and secretion of chitosanase and the influence of chitin and partially deacetylated chitosan sources (75–99% deactylation). The maximum specific activity of chitinase has been found at 5 days cultivation with the 48 hours induction time using colloidal chitin as a carbon source. To investigate characteristic of chitosan activity according to substrate, we used chitosan with various degree of deacetylation as a carbon source and found that this strain accumulates chitosanase in the culture medium using chitosanaceous substrates rather than chitinaceous substrates. The highest chitosanase activity was also presented on 4 days with 99% deacetylated chitosan.

The partially 53% deacetylated chitosan can secrete both chitinase and chitosanase which was defined as a soluble chitosan. The specific activities of chitinase and chitosanase were 0.89 at 3 days and 1.33 U/mg protein at 5 days, respectively. It indicate that chitosanase obtained fromS. griseus HUT 6037 can hydrolyze GlcNAc-GlcN and GlcN-GlcN linkages by exo-splitting manner. This activity increased with increasing degree of deacetylation of chitosan. It is the first attempt to investigate the effects of chitosanase on various degrees of deacetylations of chitosan byS. griseus HUT 6037. The highest specific activity of chitosanase was obtained with 99% deacetylated chitosan.

Key words

Streptomyces griseus HUT 6037 chitinase/chitosanase reducing sugar soluble chitosan deacetylated chitosan induction time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sakai, M. (1989) Development and present of chitin and chitosan oligosaccharides.New Food Industry 31(6): 17–25.Google Scholar
  2. [2]
    Khoka, O. (1990) Chitinolytic enzymes.Sen-I Gakkaishi 46(12): 581–585.Google Scholar
  3. [3]
    Takiguchi, Y. and K. Shimahara (1989) The production and utilization ofN-acetylchitooligosaccharides and chitooligosaccharides by micro-organism,Bioindustry 6(8): 616–621.Google Scholar
  4. [4]
    Joshi, S., M. Kozlowski, S. Richens, and D. M. Comberbach (1989) Chitinase and chitobiase production during fermentation of genetically improvedSerratia liquefaciens.Enzyme Microb. Technol. 11: 289–296.CrossRefGoogle Scholar
  5. [5]
    Mitsutomi, M., A. Ohtakara, T. Fukamizo, and S. Goto (1990) Action pattern of aeromonas hydrophila chitinase on partiallyN-acetylated chitosan.Agric. Biol. Chem. 54(4): 871–877.Google Scholar
  6. [6]
    Mitsutomi, M., H. Kidoh, H. Tomita, and T. Watanabe (1995) The action of bacillus circulans WL-12 chitinase on partiallyN-acetylated chitosan.Biosci. Biotechnol. Biochem. 59(3): 529–531.CrossRefGoogle Scholar
  7. [7]
    Mitsutomi M., T. Hata, and T. Kuwahara (1995) Purification and characterization of novel chitinases fromStreptomyces griseus HUT 6037.J. Ferment. Bioeng. 80(2): 153–158.CrossRefGoogle Scholar
  8. [8]
    Ohno, T., S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, and T. Watanabe (1996) A modular family 19 chitinase found in the prokaryotic organismStreptomyces griseus HUT 6037.J. Bacteriol. 178(17): 5065–5070.Google Scholar
  9. [9]
    Monreal J., and E. T. Reese (1969) The chitinase ofSerratia marcescens.Can. J. Microbiol. 15: 689.CrossRefGoogle Scholar
  10. [10]
    Reid, J. D. and D. M. Ogrydziak (1981) Chitinase-overproducing mutant ofSerratia marcescens.Appl. Environ. Microbiol. 41(3): 664–669.Google Scholar
  11. [11]
    Roberts, R. L. and E. Cabib (1982)Serratia marcescens chitinase: One-step purification and use for the determination of chitin.Anal. Biochem. 127: 402–412.CrossRefGoogle Scholar
  12. [12]
    Fuchs, R. L., S. A. McPherson, and D. J. Drahos (1986) Cloning of aSerratia marscens gene encoding chitinase.Appl. Environ. Microbiol. 51: 504–509.Google Scholar
  13. [13]
    Ulhoa, C. J. and J. F. Peberdy (1992) Purification and some properties of the extracellular chitinase produced byTrichoderma harzianum.Enzyme Microb. Technol. 14: 236–240.CrossRefGoogle Scholar
  14. [14]
    Neugebauer, E., B. Gamache, C. V. D., and R. Brzezinski (1991) Chitinolytic properties ofStreptomyces lividans.Arch. Microbiol. 156: 192–197.CrossRefGoogle Scholar
  15. [15]
    Robbins, P. W., C. Albright, and B. Benfield (1988) Cloning and expression of aStreptomyces plicatus chitinase (chitinase-63) inEscherichia coli.J. Biol. Chem. 263(1): 443–447.Google Scholar
  16. [16]
    Vyas, P. and M. V. Deshpande (1989) Chitinase production byMyrothecium verrucaria and its significance for fungal mycelia degradation.J. Gen. Appl. Microbiol. 35: 343–350.CrossRefGoogle Scholar
  17. [17]
    Zikakis, J. P. (1984) Chitin, Chitosan, and Related Enzymes. 1st ed., p. 161–179, Academic Press, Orlando.Google Scholar
  18. [18]
    Muzzarelli, R. A. A. (1977) Chitin. 1st ed., p. 164–167, Pergamon Press, Oxford.Google Scholar
  19. [19]
    Ohtakara, A., H. Ogata, Y. Taketomi, and M. Mitsutomi (1984) Purification and Characterization of Chitosanase fromStreptomyces griseus. p. 147–160, Academic Press, Orlando.Google Scholar
  20. [20]
    Berger, L. R. and D. M. Reynolds (1958) The chitinase system of a strain ofStreptomyces griseus.Biochim. Biophys. Acta. 29: 522–534.CrossRefGoogle Scholar
  21. [21]
    Mima, S., M. Miya, R. Iwamoto, and S. Yoshikawa (1983) Highly deacetylation chitosan and its properties.J. Appl. Polymer Sci. 28: 1909–1917.CrossRefGoogle Scholar
  22. [22]
    Sannan, T., K. Kurita, and Y. Iwakura (1976). Effect of deacetylation on solubility.Makromol. Chem. 177: 3589–3600.CrossRefGoogle Scholar
  23. [23]
    Domszy, J. G. and G. A. F. Roberts (1985) Evaluation of infrared spectroscopic techniques for analyzing chitosan.Makromol. Chem. 186: 1671–1677.CrossRefGoogle Scholar
  24. [24]
    Sannan, T., K. Kurita, K. Ogura, and Y. Iwakura (1978) Studies on chitin: 7. IR spectroscopic determination of degree of deacetylation.Polymer 19: 458–459.CrossRefGoogle Scholar
  25. [25]
    Ohtakara, A. (1988) Chitosanase fromStreptomyces griseus, Methods in Enzymology, 161, p. 64–69. Academic Press.Google Scholar
  26. [26]
    C. J. M. Rondle and W. T. J. Morgan (1955) The determination of glucosamine and galactosamine.J. Biochem. 61: 586–589.Google Scholar
  27. [27]
    Reissig, J. L., J. L. Strominger, and L. F. Leloir (1955) A modified colorimetric method for the estimation ofN-acetylamino sugars.J. Biol. Chem. 27: 959–966.Google Scholar
  28. [28]
    Sigma Chemical Co. (1994) Sigma quality control test procedure enzymatic assay of chitinase (EC, St. Louis, MO.Google Scholar
  29. [29]
    Sigma Chemical Co. (1994) Sigma quality control test procedure enzymatic assay of β—N-acetyl-glucosaminidase (EC, Sigma Prod. No. A-3189. St. Louis, MO.Google Scholar
  30. [30]
    Imoto, T. and Yagishita, K. (1971) A simple activity measurement of lysozyme.Agric. Biol. Chem. 35: 1154–1156.Google Scholar
  31. [31]
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72: 248–254.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 1999

Authors and Affiliations

  • Ho Sup Jung
    • 1
  • Jeong Woo Son
    • 1
  • Hong Seok Ji
    • 2
  • Kwang Kim
    • 1
  1. 1.Department of Chemical EngineeringDong-A UniversityPusanKorea
  2. 2.Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations