Antioxidant properties ofErigeron annuus extract and its three phenolic constituents

  • Hee Jung Lee
  • Youngwan Seo


The antioxidant activity of the extract ofErigeron annuus was assessed by means of two differentin vitro tests: bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical (DPPH test) and the scavenging of authentic peroxynitrite in company with peroxynitrite generation from 3-morpholinosydnonimine (SIN-1). In both tests, the 85% aq. MeOH andn-BuOH soluble fractions of the crude extract showed a significant scavenging effect on peroxynitrite and DPPH radical in comparison to L-ascorbic acid. And bioassay-guided fractionation of then-BuOH soluble fraction led to the isolation of three compounds: Apigenin (1), quercetin-3-O-glucoside (2), and caffeic acid (3). The structures of the isolated compounds were elucidated on the basis of their spectroscopic data and their antioxidant activities were measured by determining their capacity to scavenge peroxynitrite and the DPPH radical.


Erigeron annuus authentic peroxynitrite (ONOO3-morpholinosydnonimine (SIN-1) 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) 


  1. [1]
    Fang, Y. Z., S. Yang, and G. Wu (2002) Free radicals, antioxidants, and nutrition.Nutrition 18: 872–879.CrossRefGoogle Scholar
  2. [2]
    Patel, R. P., J. McAndrew, H. Sellak, C. R. White, H. Jo, B. A. Freeman, and V. M. Darley-Usmar (1999) Biological aspects of reactive nitrogen species.Biochim. Biophys. Acta 1411: 385–400.CrossRefGoogle Scholar
  3. [3]
    Grace, S. C., M. G. Salgo, and W. A. Pryor (1998) Scavenging of peroxynitrite by a phenolic/peroxidase system prevents oxidative damage to DNA.FEBS Lett. 426: 24–28.CrossRefGoogle Scholar
  4. [4]
    Virag, L., E. Szabo, P. Gergely, and C. Szabo (2003) Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention.Toxicol. Lett. 140–141: 113–124.CrossRefGoogle Scholar
  5. [5]
    Reiter, R. J., D. X. Tan, and S. Burkhardt (2002) Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin.Mech. Ageing Dev. 123: 1007–1019.CrossRefGoogle Scholar
  6. [6]
    Heijnen, C. G. M., G. R. M. M. Haenen, and J. A. J. M. Vekemans (2001) Peroxynitrite scavenging of flavonoids: Structure activity relationship.Environ. Toxicol. Pharmacol. 10: 199–206.CrossRefGoogle Scholar
  7. [7]
    Heijnen, C. G. M., G. R. M. M. Haenen, F. A. A. van Acker, W. J. F. van der Vijgh, and A. Bast (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups.Toxicol. In Vitro 15: 3–6.CrossRefGoogle Scholar
  8. [8]
    Chung, H. Y., H. R. Choi, H. J. Park, J. S. Choi, and W. C. Choi (2001) Peroxynitrite scavenging and cytoprotective activity of 2,3,4-tribromo-4,5-dihydroxybenzyl methyl ether from the marine algaSymphycladia latiuscula.J. Agric. Food Chem. 49: 3614–3621.CrossRefGoogle Scholar
  9. [9]
    Blois, M. S. (1958) Antioxidant determination by the use of a stable free radical.Nature 181: 1199–1202.CrossRefGoogle Scholar
  10. [10]
    Lee, H. J., Y. A. Kim, J. W. Ahn, B. J. Lee, S. G. Moon, and Y. Seo (2004) Screening of peroxynitrite and DPPH radical scavenging activities from salt marsh plants.Kor. J. Biotechnol. Bioeng. 19: 57–61.Google Scholar
  11. [11]
    Lee, H. J., K. E. Park, J. S. Yoo, J. W. Ahn, B. J. Lee, and Y. Seo (2004) Studies on screening of seaweed extracts for peroxynitrite and DPPH radical scavenging activities.Ocean and Polar Research 26: 59–64.Google Scholar
  12. [12]
    Bennington, C. C. and D. A. Stratton (1998) Field tests of density and frequency-dependent selection inErigeron annuus (Compositae).Am. J. Bot. 85: 540–545.CrossRefGoogle Scholar
  13. [13]
    Kim, T. S. and H. J. Lee (1991) Life history and growth pattern on theErigeron annuus.Kor. J. Ecol. 14: 211–231.Google Scholar
  14. [14]
    Kim, T. S., H. J. Lee, and D. W. Byun (1992) Germination, shade tolerance and community characteristics ofErigeron annuus L. in Cheju,Kor. J. Ecol. 15: 103–116.Google Scholar
  15. [15]
    Shanghai Scientific Technological Publishers and Shougakukan. (eds.).Dictionary of Chinese Materia Medica. vol. 1. Shougakukan, Tokyo, 1985, pp. 25.Google Scholar
  16. [16]
    Oh, H., S. Lee, H. S. Lee, D. H. Lee, S. Y. Lee, H. T. Chung, T. S. Kim, and T. O. Kwon (2002) Germination inhibitory constituents fromErigeron annuus.Phytochemistry 61: 175–179.CrossRefGoogle Scholar
  17. [17]
    Iijima, T., Y. Yaoita, and M. Kikuchi (2003) Two new cyclopentenone derivatives and a new cyclooctadienone derivative fromErigeron annuus (L.) PERS.,Erigeron philadelphicus L., andErigeron sumatrensis RETZ.Chem. Pharm. Bull. 51: 894–896.CrossRefGoogle Scholar
  18. [18]
    Iijima, T., Y. Yaoita, and M. Kikuchi (2003) Five new sesquiterpenoids and a new diterpenoid fromErigeron annuus (L.) PERS.,Erigeron philadelphicus L. andErigeron sumatrensis RETZ.Chem. Pharm. Bull. 51: 545–549.CrossRefGoogle Scholar
  19. [19]
    Kooy, N. W., J. A. Royall, H. Ischiropoulos, and J. S. Beckman (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123.Free Radic. Biol. Med. 16: 149–156.CrossRefGoogle Scholar
  20. [20]
    Wagner, H. and V. M. Chari (1976)13C-NMR spektren naturlich vorkommender flavonoide.Tetrahedron Lett. 21: 1799–1802.CrossRefGoogle Scholar
  21. [21]
    Saleem, M., H. J. Kim, C. Jin, and Y. S. Lee (2004) Antioxidant caffeic acid derivatives from leaves of Parthenocissus tricuspidata.Arch. Pharm. Res. 27: 300–304.CrossRefGoogle Scholar
  22. [22]
    Harborne, J. B. (1982)The Flavonoids: Advances in Research. pp. 60. Champman and Hall, London, UK.Google Scholar
  23. [23]
    Harborne, J. B. (1994)The Flavonoids: Advances in Research. pp. 453. Champman and Hall.Google Scholar
  24. [24]
    Niwa, T., U. Doi, Y. Kato, and T. Osawa (1999) Inhibitory mechanism of sinapinic acid against peroxynitritemediated tyrosine nitration of proteinin vitro.FEBS Lett. 459: 43–46.CrossRefGoogle Scholar
  25. [25]
    Pannala, A. S., R. Razaq, B. Halliwell, S. Singh, and C. A. Rice-Evans (1998) Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates: nitration or electron donation?Free Radic. Biol. Med. 24: 594–606.CrossRefGoogle Scholar
  26. [26]
    Ippoushi, K., K. Azuma, H. Ito, H. Horie, and H. Higashio (2003) [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions.Life Sci. 73: 3427–3437.CrossRefGoogle Scholar
  27. [27]
    Robards, K., P. D. Prenzler, G. Tucker, P. Swatsitang, and W. Glover (1999) Phenolic compounds and their role in oxidative processes in fruits.Food Chem. 66: 401–436.CrossRefGoogle Scholar
  28. [28]
    Tsuda, T., Y. Kato, and T. Osawa (2000) Mechanism for the peroxynitrite scavenging activity by anthocyanins.FEBS Lett. 484: 207–210.CrossRefGoogle Scholar
  29. [29]
    Hur, Y. S., T. H. Hong, and W. H. Hong (2004) Effective extraction of oligomeric proanthocyanidin (OPC) from wild grape seeds.Biotechnol. Bioprocess Eng. 9: 471–475.CrossRefGoogle Scholar
  30. [30]
    Liebert, M., U. Licht, V. Bohm, and R. Bitsch (1999) Antioxidant properties and total phenolics content of green and black tea under different brewing conditions.Z. Lebensm. Unters. Forsch. A 208: 217–220.CrossRefGoogle Scholar
  31. [31]
    Johnson, M. K. and G. Loo (2000) Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA.Mutat. Res. 459: 211–218.Google Scholar
  32. [32]
    Ketsawatsakul, U., M. Whiteman, and B. Halliwell (2000) A reevaluation of the peroxynitrite scavenging activity of some dietary phenolics.Biochem. Biophys. Res. Commun. 279: 692–699.CrossRefGoogle Scholar
  33. [33]
    Kono, Y., K. Kobayashi, S. Tagawa, K. Adachi, A. Ueda, Y. Sawa, and H. Shibata (1997) Antioxidant activity of polyphenolics in diets rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen.Biochim. Biophys. Acta 1335: 335–342.Google Scholar
  34. [34]
    Shutenko, Z., Y. Henry, E. Pinard, J. Seylaz, P. Potier, F. Berthet, P. Girard and R. Sercombe (1999) Influence of the antioxidant quercetinin vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion.Biochem. Pharmacol. 57: 199–208.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2006

Authors and Affiliations

  1. 1.Research Institute of Marine Science and Technology (RIMST)Korea Maritime UniversityBusanKorea
  2. 2.Division of Marine Environment and BioscienceKorea Maritime UniversityBusanKorea

Personalised recommendations