Skip to main content
Log in

Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production byE. coli. Thefcs (feruloyl-CoA synthetase) andech (enoyl-CoA hydratase/aldolase) genes cloned fromAmycolatopsis sp. strain HR104 andDelftia acidovorans were introduced to pBAD24 vector with PBAD promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production withE. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDDAEF. Vanillin production was optimized withE. coli harboring pDAHEF. Induction of thefcs andech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of 0.2% ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krings, U. and R. G. Berger (1998) Biotechnological production of flavours and fragrances.Appl. Microbiol. Biotechnol. 49: 1–8.

    Article  CAS  Google Scholar 

  2. Lomascolo, A., C. Stentelaire, M. Asther, and L. Lesage-Meessen (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry.Trends Biotechnol. 17: 282–289.

    Article  CAS  Google Scholar 

  3. Lopez-Malo, A., S. Alzamora, and A. Agraiz (1995) Effect of natural vanillin on germination time and radial growth rate of moulds in fruit agar systems.Food Microbiol. 12: 215–219.

    Article  Google Scholar 

  4. Cerrutti, P. and S. M. Alzamora (1996) Inhibitory effects of vanillin on some food spoilage yeasts in laboratory mecia and fruit purees.Int. J. Food. Microbiol. 29: 379–386.

    Article  CAS  Google Scholar 

  5. Cerrutti, P. S., M. Alzamora, and S. Vidales (1997) Vanillin as an antimicrobial for producing shelf-stable strawberry puree.J. Food Sci. 62: 608–610.

    Article  CAS  Google Scholar 

  6. Burri, J., M. Graf, P. Lambelet, and J. Loiger (1989) Vanillin: More than a flavouring agent-a potent antioxidant.J. Sci. Food. Agric. 48.

  7. Prince, R. C. and D. E. Gunson (1994) Just plain vanilla?Trends Biochem. Sci. 19: 521.

    Article  CAS  Google Scholar 

  8. Lesage-Meesen, L., M. Delattre, M. Haon, J. F. Thibault, B. C. Ceccaldi, P. Brunerie, and M. Asther (1996) A two-step bioconversion process for vanillin production from ferulic acid combiningAspergillus niger andPycnoporus cimabarinus.J. Biotechnol. 50: 107–113.

    Article  Google Scholar 

  9. Cheetham, P. S. J. (1993) The use of biotransformations for the production of flavours and fragrances.Trends Biotechnol. 11: 478–488.

    Article  CAS  Google Scholar 

  10. Hagedorn, S. and B. Kaphammer (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals.Ann. Rev. Microbiol. 48: 773–800.

    Article  CAS  Google Scholar 

  11. Overhage, J., H. Priefert, J. Rabenhorst, and A. Steinbuchel (1999) Biotransformation of eugenol to vanillin by a mutant ofPseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene.Appl. Microbiol. Biotechnol. 52: 820–828.

    Article  CAS  Google Scholar 

  12. Li, T. and J. P. Rosazza (2000) Biocatalytic synthesis of vanillin.Appl. Environ. Microbiol. 66: 684–687.

    Article  CAS  Google Scholar 

  13. Walton, N. J., A. Narbad, C. Faulds, and G. Williamson (2000) Novel approaches to the biosynthesis of vanillin.Curr. Op. Biotechnol. 11: 490–496.

    Article  CAS  Google Scholar 

  14. Muheim, A. and K. Lerch (1999) Towards a high-yield bioconversion of ferulic acid to vanillin.Appl Microbiol. Biotechnol. 51: 456–461.

    Article  CAS  Google Scholar 

  15. Achterholt, S., H. Priefert, and A. Steinbuchel (2000) Identification ofAmycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin.Appl. Microbiol Biotechnol. 54: 799–807.

    Article  CAS  Google Scholar 

  16. Peng, X., N. Misawa, and S. Harayama (2003) Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids.Appl. Environ. Microbiol. 69: 1417–1427.

    Article  CAS  Google Scholar 

  17. Plaggenborg, R., A. Steinbuchel, and H. Priefert (2001) The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation inDelftia acidovorans.FEMS Microbiol. Lett. 205: 9–16.

    CAS  Google Scholar 

  18. Plaggenborg, R., J. Overhage, A. Steinbuchel, and H. Priefert (2003) Functional analyses of genes involved in the metabolism of ferulic acid inPseudomonas puida KT2440.Appl. Microbiol. Biotechnol. 61: 528–535.

    CAS  Google Scholar 

  19. Masai, E., K. Harada, X. Peng, H. Kitayama, Y. Katayama, and M. Fukuda (2002) Cloning and characterization of the ferulic acid catabolic genes ofSphingomonas paucinobilis SYK-6.Appl. Environ. Microbiol. 68: 4416–4424.

    Article  CAS  Google Scholar 

  20. Sutherland, J. B., D. L. Crawford, and A. L. Pometto 3rd (1983) Metabolism of cinnamic,p-coumaric, and ferulic acids byStreptomyces setonii.Can. J. Microbiol. 29: 1255–1257.

    Article  Google Scholar 

  21. Rabenhorst, J. and R. Hopp (1997) Verfahren zur Herstellung von Vanillin und dafur geeignete Mikroorganismen.German Patent EP0761817A2.

  22. Muheim, A., B. Muller, T. Munch, and M. Wetli (1998) Process for the production of vanillin.German Patent EP0885968A1.

  23. Choi, J. I., S. Y. Lee, K. S. Shin, W. G. Lee, S. J. Park, H. N. Chang, and Y. K. Chang (2002) Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fedbatch culture of recombinantEscherichia coli.Biotechnol. Bioprocess Eng. 7: 371–374.

    Article  CAS  Google Scholar 

  24. Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutryrate) by metabolically engineeredEscherichia coli.Biotechnol. Bioprocess Eng. 9: 196–200.

    Article  CAS  Google Scholar 

  25. Kim, J. Y. and D. Y. Ryu (1999) Physiological and environmental effects on metabolic flux change caused by heterologous gene expression inEscherichia coli.Biotechnol. Bioprocess Eng. 4: 170–175.

    Article  CAS  Google Scholar 

  26. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Simth, J. M. Ward, and H. S. Schrempf (1985)Genetic Manipulation of Streptomycetes: A Laboratory Manual. John Innes Institute, Norwich, UK.

    Google Scholar 

  27. Sambrock, J. and D. W. Russell (2001)Molecular Cloning. 2nd ed., Cold Spring Harbor Laboratory Press, NY, USA.

    Google Scholar 

  28. Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith (1995) Hight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.J. Bacteriol. 177: 4121–4130.

    CAS  Google Scholar 

  29. Gasson, M. J., Y. Kitamura, W. R. Mclauchlan, A. Narbad, A. J. Parr, E. L. Parsons, J. Payne, M. J. Rhodes, and N. J. Walton (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester.J. Biol. Chem. 275: 4163–4170.

    Article  Google Scholar 

  30. Andreoni, V., E. Galli, and G. Galliani (1984) Metabolism of ferulic acid by a facultatively anaerobic strain ofPseudomonas cepacia.Syst. Appl. Microbiol. 5: 299–304.

    CAS  Google Scholar 

  31. Otuk, G. (1985) Degridation of ferulic acid byEscherichia coli.J. Ferment. Technol. 63: 501–506.

    CAS  Google Scholar 

  32. Gurujeyalakshmi, G. and A. Mahadevan (1987) Disimilation of ferulic acid byBacillus subtilis.Curr. Microbiol. 16: 69–73.

    Article  CAS  Google Scholar 

  33. Matamoros-Leon, B., A. Argaiz, and A. Lopez-Malo (1999) Individual and combined effects of vanillin and potassium sorbate onPenicillium digitatum. Penicillium glabrum, andPenicillium italicum growth.J. Food Prot. 62: 540–542.

    CAS  Google Scholar 

  34. Zaldivar, J., A. Martinez, and L. O. Ingram (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenicEscherichia coli.Biotechnol. Bioeng. 65: 24–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, SH., Li, C., Lee, YM. et al. Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli . Biotechnol. Bioprocess Eng. 10, 378–384 (2005). https://doi.org/10.1007/BF02931859

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931859

Keywords

Navigation