Advertisement

Biotechnology and Bioprocess Engineering

, Volume 10, Issue 4, pp 378–384 | Cite as

Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli

  • Sang-Hwal Yoon
  • Cui Li
  • Young-Mi Lee
  • Sook-Hee Lee
  • Sung-Hee Kim
  • Myung-Suk Choi
  • Weon-Taek Seo
  • Jae-Kyung Yang
  • Jae-Yeon Kim
  • Seon-Won Kim
Article

Abstract

Vanillin is one of the world's principal flavoring compounds, and is used extensively in the food industry. The potential vanillin production of the bacteria was compared to select and clone genes which were appropriate for highly productive vanillin production byE. coli. Thefcs (feruloyl-CoA synthetase) andech (enoyl-CoA hydratase/aldolase) genes cloned fromAmycolatopsis sp. strain HR104 andDelftia acidovorans were introduced to pBAD24 vector with PBAD promoter and were named pDAHEF and pDDAEF, respectively. We observed 160 mg/L vanillin production withE. coli harboring pDAHEF, whereas 10 mg/L of vanillin was observed with pDDAEF. Vanillin production was optimized withE. coli harboring pDAHEF. Induction of thefcs andech genes from pDAHEF was optimized with the addition of 13.3 mM arabinose at 18 h of culture, from which 450 mg/L of vanillin was produced. The feeding time and concentration of ferulic acid were also optimized by the supplementation of 0.2% ferulic acid at 18 h of culture, from which 500 mg/L of vanillin was obtained. Under the above optimized condition of arabinose induction and ferulic acid supplementation, vanillin production was carried out with four different types of media, M9, LB, 2YT, and TB. The highest vanillin production, 580 mg/L, was obtained with LB medium, a 3.6 fold increase in comparison to the 160 mg/L obtained before the optimization of vanillin production.

Keywords

vanillin ferulic acid metabolic engineering recombinantE. coli 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Krings, U. and R. G. Berger (1998) Biotechnological production of flavours and fragrances.Appl. Microbiol. Biotechnol. 49: 1–8.CrossRefGoogle Scholar
  2. [2]
    Lomascolo, A., C. Stentelaire, M. Asther, and L. Lesage-Meessen (1999) Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry.Trends Biotechnol. 17: 282–289.CrossRefGoogle Scholar
  3. [3]
    Lopez-Malo, A., S. Alzamora, and A. Agraiz (1995) Effect of natural vanillin on germination time and radial growth rate of moulds in fruit agar systems.Food Microbiol. 12: 215–219.CrossRefGoogle Scholar
  4. [4]
    Cerrutti, P. and S. M. Alzamora (1996) Inhibitory effects of vanillin on some food spoilage yeasts in laboratory mecia and fruit purees.Int. J. Food. Microbiol. 29: 379–386.CrossRefGoogle Scholar
  5. [5]
    Cerrutti, P. S., M. Alzamora, and S. Vidales (1997) Vanillin as an antimicrobial for producing shelf-stable strawberry puree.J. Food Sci. 62: 608–610.CrossRefGoogle Scholar
  6. [6]
    Burri, J., M. Graf, P. Lambelet, and J. Loiger (1989) Vanillin: More than a flavouring agent-a potent antioxidant.J. Sci. Food. Agric. 48.Google Scholar
  7. [7]
    Prince, R. C. and D. E. Gunson (1994) Just plain vanilla?Trends Biochem. Sci. 19: 521.CrossRefGoogle Scholar
  8. [8]
    Lesage-Meesen, L., M. Delattre, M. Haon, J. F. Thibault, B. C. Ceccaldi, P. Brunerie, and M. Asther (1996) A two-step bioconversion process for vanillin production from ferulic acid combiningAspergillus niger andPycnoporus cimabarinus.J. Biotechnol. 50: 107–113.CrossRefGoogle Scholar
  9. [9]
    Cheetham, P. S. J. (1993) The use of biotransformations for the production of flavours and fragrances.Trends Biotechnol. 11: 478–488.CrossRefGoogle Scholar
  10. [10]
    Hagedorn, S. and B. Kaphammer (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals.Ann. Rev. Microbiol. 48: 773–800.CrossRefGoogle Scholar
  11. [11]
    Overhage, J., H. Priefert, J. Rabenhorst, and A. Steinbuchel (1999) Biotransformation of eugenol to vanillin by a mutant ofPseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene.Appl. Microbiol. Biotechnol. 52: 820–828.CrossRefGoogle Scholar
  12. [12]
    Li, T. and J. P. Rosazza (2000) Biocatalytic synthesis of vanillin.Appl. Environ. Microbiol. 66: 684–687.CrossRefGoogle Scholar
  13. [13]
    Walton, N. J., A. Narbad, C. Faulds, and G. Williamson (2000) Novel approaches to the biosynthesis of vanillin.Curr. Op. Biotechnol. 11: 490–496.CrossRefGoogle Scholar
  14. [14]
    Muheim, A. and K. Lerch (1999) Towards a high-yield bioconversion of ferulic acid to vanillin.Appl Microbiol. Biotechnol. 51: 456–461.CrossRefGoogle Scholar
  15. [15]
    Achterholt, S., H. Priefert, and A. Steinbuchel (2000) Identification ofAmycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin.Appl. Microbiol Biotechnol. 54: 799–807.CrossRefGoogle Scholar
  16. [16]
    Peng, X., N. Misawa, and S. Harayama (2003) Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids.Appl. Environ. Microbiol. 69: 1417–1427.CrossRefGoogle Scholar
  17. [17]
    Plaggenborg, R., A. Steinbuchel, and H. Priefert (2001) The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation inDelftia acidovorans.FEMS Microbiol. Lett. 205: 9–16.Google Scholar
  18. [18]
    Plaggenborg, R., J. Overhage, A. Steinbuchel, and H. Priefert (2003) Functional analyses of genes involved in the metabolism of ferulic acid inPseudomonas puida KT2440.Appl. Microbiol. Biotechnol. 61: 528–535.Google Scholar
  19. [19]
    Masai, E., K. Harada, X. Peng, H. Kitayama, Y. Katayama, and M. Fukuda (2002) Cloning and characterization of the ferulic acid catabolic genes ofSphingomonas paucinobilis SYK-6.Appl. Environ. Microbiol. 68: 4416–4424.CrossRefGoogle Scholar
  20. [20]
    Sutherland, J. B., D. L. Crawford, and A. L. Pometto 3rd (1983) Metabolism of cinnamic,p-coumaric, and ferulic acids byStreptomyces setonii.Can. J. Microbiol. 29: 1255–1257.CrossRefGoogle Scholar
  21. [21]
    Rabenhorst, J. and R. Hopp (1997) Verfahren zur Herstellung von Vanillin und dafur geeignete Mikroorganismen.German Patent EP0761817A2.Google Scholar
  22. [22]
    Muheim, A., B. Muller, T. Munch, and M. Wetli (1998) Process for the production of vanillin.German Patent EP0885968A1.Google Scholar
  23. [23]
    Choi, J. I., S. Y. Lee, K. S. Shin, W. G. Lee, S. J. Park, H. N. Chang, and Y. K. Chang (2002) Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxy-valerate) by fedbatch culture of recombinantEscherichia coli.Biotechnol. Bioprocess Eng. 7: 371–374.CrossRefGoogle Scholar
  24. [24]
    Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly(3-hydroxybutryrate) by metabolically engineeredEscherichia coli.Biotechnol. Bioprocess Eng. 9: 196–200.CrossRefGoogle Scholar
  25. [25]
    Kim, J. Y. and D. Y. Ryu (1999) Physiological and environmental effects on metabolic flux change caused by heterologous gene expression inEscherichia coli.Biotechnol. Bioprocess Eng. 4: 170–175.CrossRefGoogle Scholar
  26. [26]
    Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Simth, J. M. Ward, and H. S. Schrempf (1985)Genetic Manipulation of Streptomycetes: A Laboratory Manual. John Innes Institute, Norwich, UK.Google Scholar
  27. [27]
    Sambrock, J. and D. W. Russell (2001)Molecular Cloning. 2nd ed., Cold Spring Harbor Laboratory Press, NY, USA.Google Scholar
  28. [28]
    Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith (1995) Hight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.J. Bacteriol. 177: 4121–4130.Google Scholar
  29. [29]
    Gasson, M. J., Y. Kitamura, W. R. Mclauchlan, A. Narbad, A. J. Parr, E. L. Parsons, J. Payne, M. J. Rhodes, and N. J. Walton (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester.J. Biol. Chem. 275: 4163–4170.CrossRefGoogle Scholar
  30. [30]
    Andreoni, V., E. Galli, and G. Galliani (1984) Metabolism of ferulic acid by a facultatively anaerobic strain ofPseudomonas cepacia.Syst. Appl. Microbiol. 5: 299–304.Google Scholar
  31. [31]
    Otuk, G. (1985) Degridation of ferulic acid byEscherichia coli.J. Ferment. Technol. 63: 501–506.Google Scholar
  32. [32]
    Gurujeyalakshmi, G. and A. Mahadevan (1987) Disimilation of ferulic acid byBacillus subtilis.Curr. Microbiol. 16: 69–73.CrossRefGoogle Scholar
  33. [33]
    Matamoros-Leon, B., A. Argaiz, and A. Lopez-Malo (1999) Individual and combined effects of vanillin and potassium sorbate onPenicillium digitatum. Penicillium glabrum, andPenicillium italicum growth.J. Food Prot. 62: 540–542.Google Scholar
  34. [34]
    Zaldivar, J., A. Martinez, and L. O. Ingram (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenicEscherichia coli.Biotechnol. Bioeng. 65: 24–33.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Sang-Hwal Yoon
    • 1
  • Cui Li
    • 1
  • Young-Mi Lee
    • 1
  • Sook-Hee Lee
    • 2
  • Sung-Hee Kim
    • 1
  • Myung-Suk Choi
    • 3
  • Weon-Taek Seo
    • 4
  • Jae-Kyung Yang
    • 3
  • Jae-Yeon Kim
    • 2
    • 6
  • Seon-Won Kim
    • 1
    • 2
    • 5
    • 6
  1. 1.Department of Food Science & NutritionGyeongsang National UniversityJinjuKorea
  2. 2.Division of Applied Life Science (BK21)Gyeongsang National UniversityJinjuKorea
  3. 3.Division of Forest ScienceGyeongsang National UniversityJinjuKorea
  4. 4.Department of Food ScienceJinju National UniversityJinjuKorea
  5. 5.Institute of Agriculture and Life ScienceGyeongsang National UniversityJinjuKorea
  6. 6.Environmental Biotechnology National Core Research CenterGyeongsang National UniversityJinjuKorea

Personalised recommendations