Enhanced production of recombinant protein inEscherichia coli using silkworm hemolymph

  • Ji Eun Kim
  • Eun Jeong Kim
  • Won Jong Rhee
  • Tai Hyun Park


The effect of silkworm hemolymph on the expression of recombinant protein inEscherichia coli was investigated. The addition of silkworm hemolymph to the culture medium increased the production of recombinant β-galactosidase inE. coli. The production was dependent on the concentration of the added silkworm hemolymph, which increased 2-, 5-, and 8-fold in media supplemented with 1,3, and 5% silkworm hemolymph, respectively. To identify the effective component, the silkworm hemolymph was fractionated by gel filtration column chromatography. A fraction, with a molecular weight of about 30 K was identified as the effective component.


E. coli recombinant protein silkworm hemolymph 


  1. [1]
    Hockney, J. (1993) Expression systems: A user's guide.Bio/Technology 11: 887–893.CrossRefGoogle Scholar
  2. [2]
    Marino, M. H. (1989) Expression systems for heterologous protein production.BioPharm. 2: 18–33.Google Scholar
  3. [3]
    Yoon, S. K., W. K. Kang, and T. H. Park (1994) Fed-batch operation of recombinantE. coli containingtrp promoter with controlled specific growth rate.Biotechnol. Bioeng. 43: 995–999.CrossRefGoogle Scholar
  4. [4]
    Yoon, S. K., S. K. Kwon, M. G. Park, W. K. Kang, and T. H. Park (1994) Optimization of recombinantEscherichia coli fed-batch fermentation for bovine somatotropin.Biotechnol. Lett. 16: 1119–1124.CrossRefGoogle Scholar
  5. [5]
    Yoon, S. K., W. K. Kang, and T. H. Park (1996) Regulation oftrp promoter for production of bovine somatotropin in recombinantEscherichia coli fed-batch fermentation.J. ferment. Bioeng. 81: 153–157.CrossRefGoogle Scholar
  6. [6]
    Park, S. and T. H. Park (2000) Analysis of two-stage continuous operation ofEscherichia coli containing bacteriophage γ vector.Bioprocess Eng. 23: 557–563.CrossRefGoogle Scholar
  7. [7]
    Ramisetti, S., H. A. Kang, S. K. Rhee, and C. H. Kim (2003) Production of recombinant hirudin in galactokinase-deficient saccharomyces cerevisiae by fed-batch fermentation with continuous glucose feeding.Biotechnol. Bioprocess Eng. 8: 183–186.CrossRefGoogle Scholar
  8. [8]
    Choi, J. I. and S. Y. Lee (2004) High level production of supra molecular weight poly (3-hydroxybutyrate) by metabolically engineeredEscherichia coli.Biotechnol. Bioprocess Eng. 9: 196–200.CrossRefGoogle Scholar
  9. [9]
    Lin, C. S., B. Y. Chen, T. H. Park, and H. C. Lim (1998) Characterization of bacteriophage γ Q mutant for stable and efficient production of recombinant protein inEscherichia coli system.Biotechnol. Bioeng. 57: 529–535.CrossRefGoogle Scholar
  10. [10]
    Kim, T. S. and T. H. Park (2000) Optimization of bacteriophage γ Q-containing recombinantEscherichia coli fermentation process.Bioprocess Eng. 23: 187–190.Google Scholar
  11. [11]
    Yun, E. S. and T. H. Park (2000) Quantitative measurement of general odorant using electoantennogram of male silkworm moth,Bombyx mori.Biotechnol. Bioprocess Eng. 5: 150–152.CrossRefGoogle Scholar
  12. [12]
    Ha, S. H., T. H. Park, and S. E. Kim (1996) Silkworm hemolymph as a substitute for fetal bovine serum in insect cell culture.Biotech. Tech. 10: 401–406.CrossRefGoogle Scholar
  13. [13]
    Ha, S. H. and T. H. Park (1997) Efficient production of recombinant protein inSpodoptera frugiperda/AcNPV system utilizing silkworm hemolymph.Biotechnol. Lett. 19: 1087–1091.CrossRefGoogle Scholar
  14. [14]
    Woo, S. D., W. J. Kim, H. S. Kim, J. Y. Choi, B. R. Jin, and S. K. Kang (1997) Effect of silkworm hemolymph on the expression ofE. coli β-galactosidase in insect cell lines infected with recombinant baculovirus.Mol. Cell 7: 572–574.Google Scholar
  15. [15]
    Rhee, W. J., E. J. Kim, and T. H. Park (1999) Kinetic effect of silkworm hemolymph on the delayed host cell death in an insect cell-baculovirus system.Biotechnol. Prog. 15: 1028–1032.CrossRefGoogle Scholar
  16. [16]
    Rhee, W. J. and T. H. Park (2000) Silkworm hemolymph inhibits baculovirus-induced insect cell apoptosis.Biochem. Biophys. Res. Commun. 271: 186–190.CrossRefGoogle Scholar
  17. [17]
    Rhee, W. J. and T. H. Park (2001) Flow cytometric analysis of the effect of silkworm hemolymph on the baculovirus-induced insect cell apoptosis.J. Microbiol. Biotechnol. 11: 853–857.Google Scholar
  18. [18]
    Rhee, W. J., E. J. Kim, and T. H. Park (2002) Silkworm hemolymph as a potent inhibitor of apoptosis in Sf9 cells.Biochem. Biophys. Res. Commun. 295: 779–783.CrossRefGoogle Scholar
  19. [19]
    Choi, S. S., W. J. Rhee, and T. H. Park (2002) Inhibition of human cell apoptosis by silkworm hemolymph.Biotechnol. Prog. 18: 874–878.CrossRefGoogle Scholar
  20. [20]
    Kim, E. J. and T. H. Park (2003) Anti-apoptosis engineering.Biotechnol. Bioprocess Eng. 8: 76–82.CrossRefGoogle Scholar
  21. [21]
    Kim, E. J., W. J. Rhee, and T. H. Park (2001) Isolation and characterization of an apoptosis-inhibiting component from the hemolymph ofBombyx mori, Biochem. Biophys. Res. Commun. 285: 224–228.CrossRefGoogle Scholar
  22. [22]
    J. H. Miller (1972)Purification of β-Galactosidase.In:Experiments in Molecular Genetics. pp. 398–404. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. USA.Google Scholar
  23. [23]
    U. K. Laemmli (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4.Nature 227: 680–685.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Ji Eun Kim
    • 1
  • Eun Jeong Kim
    • 1
  • Won Jong Rhee
    • 1
  • Tai Hyun Park
    • 1
  1. 1.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations