Advertisement

On-line monitoring of IPTG induction for recombinant protein production using an automatic pH control signal

  • Won Hur
  • Yoon-Keun Chung
Article

Abstract

The response of IPTG induction was investigated through the monitoring of the alkali consumption rate and buffer capacity during the cultivation of recombinantE. coli BL21(DE3) harboring the plasmid pRSET-LacZ under the control oflac promoter. The rate of alkali consumption increased along with cell growth, but declined suddenly after approximately 0.2 h of IPTG induction. The buffer capacity also declined after 0.9 h of IPTG induction. The profile of buffer capacity seems to correlate with the level of acetate production. The IPTG response was monitored only when introduced into the mid-exponential phase of bacterial cell growth. The minimum concentration of IPTG for induction, which was found out to be 0.1 mM, can also be monitored on-line andin-situ. Therefore, the on-line monitoring of alkali consumption rate and buffer capacity can be an indicator of the metabolic shift initiated by IPTG supplement, as well as for the physiological state of cell growth.

Keywords

on-line monitoring IPTG induction alkali consumption buffer capacity IPTG response 

References

  1. [1]
    Schügerl, K. (1991) Common instruments for process analysis and control. pp. 6–25, In: H. J. Rehm, G. Reed, A. Puhler, and P. Stadler (eds.)Biotechnology 4. VCH Publishers Inc., NY, USA.Google Scholar
  2. [2]
    Suzuki, T., T. Yamane, and S. Shimizu (1990) Phenomenological background and some preliminary trials of automated substrate supply in pH-stat model fed-batch culture using a set point of high limit.J. Ferment. Bioeng. 69: 292–297.CrossRefGoogle Scholar
  3. [3]
    Chung, Y. and W. Hur (2000) A new method of measuring of buffer capacity and alkali consumption rate of a fermentation process.J. Bioscience. Bioeng. 90: 580–582.Google Scholar
  4. [4]
    San, K. and G. Stephanopoulos (1984) Studies on on-line bioreactor identification IV. Utilization of pH measurement for product estimation.Biotechnol. Bioeng. 26: 1209–1218.CrossRefGoogle Scholar
  5. [5]
    Antonio, V., I. C. Juan, A. T. Jose, and U. Unai (1998) On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems.Biotechnol. Bioeng. 58: 445–450.CrossRefGoogle Scholar
  6. [6]
    Hur, W. (1997) Mathematical analysis on the pH change during cell growth in a phosphate buffer based medium, Korean.J. Biotechnol. Bioeng. 12: 167–175.Google Scholar
  7. [7]
    Han, K. (1992)A Study of Acetic Acid Formation in Escherichia coliFermentation. Ph. D. Thesis. University of California, Irvine, CA, USA.Google Scholar
  8. [8]
    Luli, G. W. and W. R. Strohl (1990) Comparison of growth, acetate production, and acetate inhibition ofEscherichia coli strains in batch and fed-batch fermentations.Appl. Environ. Microbiol. 56: 1004–1011.Google Scholar
  9. [9]
    Sun, W.-J., C. Lee, H. A. George, A. L. Powell, M. E. Dahlgren, R. Gresham, and C. H. Park (1993) Acetate inhibition on growth of recombinantE. coli and expression of fusion protein TGFa-PE40.Biotechnol. Lett. 15: 809–814.CrossRefGoogle Scholar
  10. [10]
    Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reduction sugar.Anal. Chem. 31: 426–428.CrossRefGoogle Scholar
  11. [11]
    Studier, F. W. and B. A. Moffatt (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.J. Mol. Biol. 189: 113–130.CrossRefGoogle Scholar
  12. [12]
    Glick, B. R. (1995) Metabolic load and heterologous gene expression.Biotechnol. Adv. 13: 247–261.CrossRefGoogle Scholar
  13. [13]
    Zaslaver, A., A. E. Mayo, R. Rosenberg, P. Bashkin, H. Sberro, M. Tsalyuk, M. G. Surette, and U. Alon (2004) Just-in-time transcription program in metabolic pathways.Nature Genetics 36: 486–491.CrossRefGoogle Scholar
  14. [14]
    Kosinski, M. J., U. Rinas, and J. E. Bailey (1992) Isopropyl-β-d-thiogalactopyranoside influences the metabolism ofEscherichia coli.Appl. Environ. Microbiol. 36: 782–784.Google Scholar
  15. [15]
    Xu, Z., G. Liu, P. Cen, and W. K. R. Wong (2000) Factors influencing excretive production of human epidermal growth factor (hEGF) with recombinantEscherichia coli K12 system.Bioprocess. Biosystem Eng. 23: 669–674.Google Scholar
  16. [16]
    Lee, C., W.-J. Sun, B. W. Burgess, B. H. Junker, J. Reddy, B. C. Buckland, and R. L. Greasham (1997) Process optimization for large scale production of TGF-α-PE40 in recombinantEscherichia coli: Effect of medium composition and induction timing on protein expression.J. Ind. Microbiol. Biotechnol. 18: 260–266.CrossRefGoogle Scholar
  17. [17]
    Sivakesava, S., Z. N. Xu, Y. H. Chen, J. Hackett, R. C. Huang, E. Lam, T. L. Lam, K. L. Siu, R. S. C. Wong, and W. K. R. Wong (1999) Production of excreted human epidermal growth factor (hEGF) by an efficient recombinantEscherichia coli system.Process Biochem. 34: 893–900.CrossRefGoogle Scholar
  18. [18]
    Donovan, R. S., C. W. Robinson, and B. R. Glick (1996) Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter.J. Ind. Microbiol. 16: 145–54.CrossRefGoogle Scholar
  19. [19]
    Studier, F. and B. Moffatt (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.J. Mol. Biol. 189: 113–130.CrossRefGoogle Scholar
  20. [20]
    Xie, L., D. Hall, M. A. Etieman, and E. Altman (2003) Optimization of recombinant aminolevulinate synthase production inEscherichia coli using factorial design.Appl. Microbial. Biotechnol. 63: 267–273.CrossRefGoogle Scholar
  21. [21]
    Kosinski, M. J., U. Rinas, and J. E. Bailey (1992) Isopropyl-β-d-thiogalactopyranoside influences the metabolism ofEscherichia coli.Appl. Microbiol. Biotechnol. 36: 782–783.CrossRefGoogle Scholar
  22. [22]
    Donovan, R. S., C. W. Robinson, and B. R. Glick (2000) Optimizing the expression of a monoclonal antibody fragment under the transcriptional control of theEscherichia coli lac promoter.Can. J. Microbiol. 46: 532–541.CrossRefGoogle Scholar
  23. [23]
    Ramisetti, S., H. A. Kang, S. K. Lee, and C. H. Kim (2003) Production of recombinant hirudin in galactokinase-deficientSaccharomyces cerevisiae by fed-batch fermentation with continuous glucose feeding.Biotechnol. Bioprocess Eng. 8: 183–186.CrossRefGoogle Scholar
  24. [24]
    Kim, C. H., J. Rao, D. J. Youn, and S. K. Lee (2003) Scale-up of recombinant hirudin production fromSaccharomyces cerevisiae.Biotechnol. Bioprocess Eng. 8: 303–305.CrossRefGoogle Scholar
  25. [25]
    Albano, C. R., L. Randers-Eichhorn, W. E. Bentley, and G. Rao (1998) Green fluorescent protein as a real time quantitative reporter of heterologous protein production.Biotechnol. Prog. 14: 350–354.CrossRefGoogle Scholar
  26. [26]
    Jones, J. J., A. M. Bridges, A. P. Fosberry, S. Gardner, R. R. Lowers, R. R. Newby, P. J. James, R. M. Hall, and O. Jenkins (2004) Potential of real-time measurement of GFP-fusion proteins.J. Biotechnol. 109: 201–211.CrossRefGoogle Scholar
  27. [27]
    Rhee, J. I., A. Ritzka, and T. Scheper (2004) On-line monitoring and control of substrate concentrations in biological processes by flow injection analysis systems.Biotechnol. Bioprocess Eng. 9: 156–165.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  1. 1.School of Biotechnology and BioengineeringKangwon National UniversityKangwonKorea

Personalised recommendations