Skip to main content

Identification ofArcobacter species using phospholipid and total fatty acid profiles

Abstract

High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the phospholipids and fatty acids of fourArcobacter species (becoming routinely isolated from a wide variety of food sources, especially of animal origin) to provide information for the identification within these species. Phospholipid differences were observed in the HPLC profiles. GC-MS analysis provided a complete fatty acid composition for each arcobacter that after pattern recognition analysis allows taxonomic classification of each species.

This is a preview of subscription content, access via your institution.

Abbreviations

DAD:

diode array detector

FA:

fatty acid(s)

FAB:

fast atom bombardment

FAME(s):

fatty acid methyl ester(s)

GC:

gas chromatography

HPLC:

high-performance liquid chromatography

MS:

mass spectrometry

NIST:

National Institute of Standards and Technology

PCA:

principal component analysis

TIC:

total ion current

References

  • Basile F., Beverly M.B., Abbas-Hawks C., Mowry C.D., Voorhees K.J., Hadfield T.L.: Direct mass spectrometric analysis ofin situ thermally hydrolyzed and methylated lipids from whole bacterial cells.Anal.Chem.70, 1555–1562 (1998).

    PubMed  Article  CAS  Google Scholar 

  • Bastyns K., Cartuyvels D., Chapelle S., Vandamme P., Goossens H., De Wachter R.: A variable 23S rRNA region is useful discriminating target for genus-specific and species-specific PCR amplification inArcobacter species.Syst.Appl.Microbiol.18, 353–356 (1995).

    CAS  Google Scholar 

  • Beebe K.R., Pell R.J., Seasholtz M.B.:Chemometrics: a Practical Guide. John Wiley & Sons, New York 1999.

    Google Scholar 

  • Beverly M.B., Voorhees K.J., Hadfield T.L.: Direct mass spectrometric analysis ofBacillus spores.Rap.Com.Mass Spectrom.13, 2320–2326 (1999).

    Article  CAS  Google Scholar 

  • Buyer J.S.: Identification of bacteria from single colonies by fatty acid analysis.J.Microbiol.Meth.48, 259–265 (2002).

    Article  CAS  Google Scholar 

  • Červenka L., Malíková Z., Zachová I., Vytřasová J.: The effect of acetic acid, citric acid, and trisodium citrate in combination with different levels of water activity on the growth ofArcobacter butzleri in culture.Folia Microbiol.49, 8–12 (2004).

    Article  Google Scholar 

  • Cronan J.E.: Phospholipis modifications in bacteria.Curr.Opin.Microbiol.5, 202–205 (2002).

    PubMed  Article  CAS  Google Scholar 

  • Donachie S.P., Bowman J.P., On S.L.W., Alam M.:Arcobacter halophilus sp.nov., the first obligate halophile in the genusArcobacter.Internat.J.Syst.Bacteriol.Evol.Microbiol.55, 1271–1277 (2005).

    Article  CAS  Google Scholar 

  • Fenselau C.:Mass Spectrometry for the Characterization of Microorganisms, pp. 8–17. Maple Press, York (PA) 1994.

    Google Scholar 

  • Gattinger A., Schloter M., Munch J.C.: Phospholipid, etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeontal monocultures for taxonomical profiling.FEMS Microbiol.Lett.213, 133–139 (2002).

    PubMed  CAS  Google Scholar 

  • Harmon K.M., Wesley I.V.: Identification ofArcobacter isolates by PCR.Lett.Appl.Microbiol.23, 241–244 (1996).

    PubMed  Article  CAS  Google Scholar 

  • Harmon K.M., Wesley I.V.: Multiplex PCR for the identification ofArcobacter and differentiation ofArcobacter butzleri from other arcobacters.Vet.Microbiol.58, 215–227 (1997).

    PubMed  Article  CAS  Google Scholar 

  • Harrington P.B.:RESOLVE Tutorial. Colorado School of Mines, Golden (USA) 1990.

    Google Scholar 

  • Harrington C.S., On S.L.W.: Extensive 16S ribosomal RNA gene sequence diversity inCampylobacter hyointestinalis strains: taxonomic and applied implications.Internat.J.Syst.Bacteriol.49, 1171–1175 (1999).

    CAS  Google Scholar 

  • Hochel I., Viocha D., Škvor J., Musil M.: Development of an indirect competitive ELISA for detection ofCampylobacter jejuni subsp.jejuni O:23 in foods.Folia Microbiol.49, 579–586 (2004).

    Article  CAS  Google Scholar 

  • Houf K., Tutenel A., De Zutter L., Van Hoof J., Vandamme P.: Development of a multiplex PCR assay for the simultaneous detection and identification ofArcobacter butzieri, Arcobacter cryaerophius andArcobacter skirrowii.FEMS Microbiol. Lett.193, 89–94 (2000).

    PubMed  Article  CAS  Google Scholar 

  • Houf K., On S.L.W., Coenye T., Mast J., Van Hoof J., Vandamme P.:Arcobacter cibarius sp.nov., isolated from broiler carcasses.Internat.J.Syst.Bacteriol.Evol.Microbiol.55, 713–717 (2005).

    Article  CAS  Google Scholar 

  • Kabeya H., Maruyama S., Morita Y., Kubo M., Yamamoto K., Arai S., Izumi T., Kobayashi Y., Katsube Y., Mikami T.: Distribution ofArcobacter species among livestock in Japan.Vet.Microbiol.93, 153–158 (2003a).

    PubMed  Article  Google Scholar 

  • Kabeya H., Kobayashi Y., Maruyama S., Mikami T.: One-step polymerase chain reaction-based typing ofArcobacter species.Internat.J.Food Microbiol.81, 163–168 (2003b).

    Article  CAS  Google Scholar 

  • Logan E.F., Neill S.D., Mackie D.P.: Mastitis in dairy cows associated with an aerotolerantCampylobacter.Vet.Res.110, 229–230 (1982).

    CAS  Google Scholar 

  • Mansfield L.P., Forsythe S.J.:Arcobacter butzleri andA. cryaerophilus — newly emerging human pathogens.Rev.Med.Microbiol.11, 161–170 (2000).

    Google Scholar 

  • McClung C.R., Patriquin D.G.: Isolation of a nitrogen-fixingCampylobacter species from the roots ofSpartina alternifloraLoisel.Can.J.Microbiol.26, 881–886 (1980).

    PubMed  CAS  Google Scholar 

  • MIDI (Microbial Diagnostics), Newark (Delaware); http://www.midi-inc.com (1999).

  • Miketová P., Moore I.M., Pasvogel A., Khailova L., Schram K.H., Hunter J.J., Kaemingk K.L.: Determination of phospholipids as biomarkers of brain tissue damage in acute lymphoblastic leukemia patients.Sci.Pap.Univ.Pardubice Ser.A8, 73–91 (2002).

    Google Scholar 

  • Olsen G.J., Overbeek R., Larsen N., March T.O., McCaughey J., Maciukenas M.A., Kuan W.M., Macke T.J., Xing Y., Woese C.R.: The ribosomal data base project.Nucl.Acids Res.20, 2199–2220 (1992).

    PubMed  CAS  Google Scholar 

  • Phillips C.A.: Arcobacters as emerging human foodborne pathogens.Food Control12, 1–6 (2001a).

    Article  Google Scholar 

  • Philips C.A.:Arcobacter spp. in food: isolation, identification and control.Trends Food Sci.Technol.12, 263–275 (2001b).

    Article  Google Scholar 

  • Šabatková Z., Pazlarová J., Demnerová K.: Sample processing effect on polymerase chain reaction used for identification ofCampytobacter jejum.Fona Microbiol.49, 693–698 (2004).

    Article  Google Scholar 

  • Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J.: Revision ofCampylobacter, Helicobacter, andWolinella taxonomy: emendation of generic descriptions and proposal ofArcobacter gen.nov.Internat.J.Syst.Bacteriol.41, 88–103 (1991).

    CAS  Google Scholar 

  • Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., Van Den Borre C., Higgins R., Hommez J., Kersters K., Butzler J.P., Goosens H.: Polyphasis taxonomic study of the emended genusArcobacter withArcobacter butzleri comb.nov. andArcobacter skirrowii sp.nov., an aerotolerant bacterium isolated from veterinary specimen.Internat.J.Syst.Bacteriol.42, 344–356 (1992).

    CAS  Article  Google Scholar 

  • Vandenberg O., Dediste A., Houf K., Ibekwem S., Souayah H., Cadranel S., Douat N., Zissis G., Butzler J.P., Vandamme P.:Arcobacter species in humans.Emerg.Infect.Dis.10, 1863–1867 (2004).

    PubMed  Google Scholar 

  • Vytřasová J., Pejchalová M., Harsová K., Binová S.: Isolation ofArcobacter butzleri, Arcobacter cryaerophilus in samples of meats and from meat-processing plants by a culture technique and detection by PCR.Folia Microbiol.47, 227–232 (2002).

    Google Scholar 

  • Wesley I.V., Baetz A.L., Larson D.J.: Infection of cesarean-derived celostrum-deprived 1-day-old piglets withArcobacter butzleri, Arcobacter cryaerophilus, andArcobacter skirrowii.Infect.Immun.64, 2295–2299 (1996).

    PubMed  CAS  Google Scholar 

  • Zelles L.: Fatty acids patterns of microbial phospholipids and lipopolysacharides, pp. 80–93 in F. Schinner, R. Ohlinger, E. Kandeler, R. Margesin (Eds):Methods in Soil Biology, Springer-Verlag, New York 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partially supported by the office of Vice President for Research and Graduate Studies at theUniversity of Arizona, Tucson (Arizona) and byMinistry of Education, Youth and Sports of the Czech Republic, project no. 253 100 002.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jelínek, D., Miketová, P., Khailová, L. et al. Identification ofArcobacter species using phospholipid and total fatty acid profiles. Folia Microbiol 51, 329–336 (2006). https://doi.org/10.1007/BF02931826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931826

Keywords

  • Equivalent Chain Length
  • Pattern Recognition Analysis
  • NIST Mass Spectral Library
  • Arcobacter Species
  • Total Fatty Acid Profile