Advertisement

Folia Microbiologica

, Volume 51, Issue 4, pp 329–336 | Cite as

Identification ofArcobacter species using phospholipid and total fatty acid profiles

  • D. Jelínek
  • P. Miketová
  • L. Khailová
  • K. H. Schram
  • I. M. (Ki) Moore
  • J. Vytřasová
Article

Abstract

High-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the phospholipids and fatty acids of fourArcobacter species (becoming routinely isolated from a wide variety of food sources, especially of animal origin) to provide information for the identification within these species. Phospholipid differences were observed in the HPLC profiles. GC-MS analysis provided a complete fatty acid composition for each arcobacter that after pattern recognition analysis allows taxonomic classification of each species.

Keywords

Equivalent Chain Length Pattern Recognition Analysis NIST Mass Spectral Library Arcobacter Species Total Fatty Acid Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

DAD

diode array detector

FA

fatty acid(s)

FAB

fast atom bombardment

FAME(s)

fatty acid methyl ester(s)

GC

gas chromatography

HPLC

high-performance liquid chromatography

MS

mass spectrometry

NIST

National Institute of Standards and Technology

PCA

principal component analysis

TIC

total ion current

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basile F., Beverly M.B., Abbas-Hawks C., Mowry C.D., Voorhees K.J., Hadfield T.L.: Direct mass spectrometric analysis ofin situ thermally hydrolyzed and methylated lipids from whole bacterial cells.Anal.Chem.70, 1555–1562 (1998).PubMedCrossRefGoogle Scholar
  2. Bastyns K., Cartuyvels D., Chapelle S., Vandamme P., Goossens H., De Wachter R.: A variable 23S rRNA region is useful discriminating target for genus-specific and species-specific PCR amplification inArcobacter species.Syst.Appl.Microbiol.18, 353–356 (1995).Google Scholar
  3. Beebe K.R., Pell R.J., Seasholtz M.B.:Chemometrics: a Practical Guide. John Wiley & Sons, New York 1999.Google Scholar
  4. Beverly M.B., Voorhees K.J., Hadfield T.L.: Direct mass spectrometric analysis ofBacillus spores.Rap.Com.Mass Spectrom.13, 2320–2326 (1999).CrossRefGoogle Scholar
  5. Buyer J.S.: Identification of bacteria from single colonies by fatty acid analysis.J.Microbiol.Meth.48, 259–265 (2002).CrossRefGoogle Scholar
  6. Červenka L., Malíková Z., Zachová I., Vytřasová J.: The effect of acetic acid, citric acid, and trisodium citrate in combination with different levels of water activity on the growth ofArcobacter butzleri in culture.Folia Microbiol.49, 8–12 (2004).CrossRefGoogle Scholar
  7. Cronan J.E.: Phospholipis modifications in bacteria.Curr.Opin.Microbiol.5, 202–205 (2002).PubMedCrossRefGoogle Scholar
  8. Donachie S.P., Bowman J.P., On S.L.W., Alam M.:Arcobacter halophilus sp.nov., the first obligate halophile in the genusArcobacter.Internat.J.Syst.Bacteriol.Evol.Microbiol.55, 1271–1277 (2005).CrossRefGoogle Scholar
  9. Fenselau C.:Mass Spectrometry for the Characterization of Microorganisms, pp. 8–17. Maple Press, York (PA) 1994.Google Scholar
  10. Gattinger A., Schloter M., Munch J.C.: Phospholipid, etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeontal monocultures for taxonomical profiling.FEMS Microbiol.Lett.213, 133–139 (2002).PubMedGoogle Scholar
  11. Harmon K.M., Wesley I.V.: Identification ofArcobacter isolates by PCR.Lett.Appl.Microbiol.23, 241–244 (1996).PubMedCrossRefGoogle Scholar
  12. Harmon K.M., Wesley I.V.: Multiplex PCR for the identification ofArcobacter and differentiation ofArcobacter butzleri from other arcobacters.Vet.Microbiol.58, 215–227 (1997).PubMedCrossRefGoogle Scholar
  13. Harrington P.B.:RESOLVE Tutorial. Colorado School of Mines, Golden (USA) 1990.Google Scholar
  14. Harrington C.S., On S.L.W.: Extensive 16S ribosomal RNA gene sequence diversity inCampylobacter hyointestinalis strains: taxonomic and applied implications.Internat.J.Syst.Bacteriol.49, 1171–1175 (1999).Google Scholar
  15. Hochel I., Viocha D., Škvor J., Musil M.: Development of an indirect competitive ELISA for detection ofCampylobacter jejuni subsp.jejuni O:23 in foods.Folia Microbiol.49, 579–586 (2004).CrossRefGoogle Scholar
  16. Houf K., Tutenel A., De Zutter L., Van Hoof J., Vandamme P.: Development of a multiplex PCR assay for the simultaneous detection and identification ofArcobacter butzieri, Arcobacter cryaerophius andArcobacter skirrowii.FEMS Microbiol. Lett.193, 89–94 (2000).PubMedCrossRefGoogle Scholar
  17. Houf K., On S.L.W., Coenye T., Mast J., Van Hoof J., Vandamme P.:Arcobacter cibarius sp.nov., isolated from broiler carcasses.Internat.J.Syst.Bacteriol.Evol.Microbiol.55, 713–717 (2005).CrossRefGoogle Scholar
  18. Kabeya H., Maruyama S., Morita Y., Kubo M., Yamamoto K., Arai S., Izumi T., Kobayashi Y., Katsube Y., Mikami T.: Distribution ofArcobacter species among livestock in Japan.Vet.Microbiol.93, 153–158 (2003a).PubMedCrossRefGoogle Scholar
  19. Kabeya H., Kobayashi Y., Maruyama S., Mikami T.: One-step polymerase chain reaction-based typing ofArcobacter species.Internat.J.Food Microbiol.81, 163–168 (2003b).CrossRefGoogle Scholar
  20. Logan E.F., Neill S.D., Mackie D.P.: Mastitis in dairy cows associated with an aerotolerantCampylobacter.Vet.Res.110, 229–230 (1982).Google Scholar
  21. Mansfield L.P., Forsythe S.J.:Arcobacter butzleri andA. cryaerophilus — newly emerging human pathogens.Rev.Med.Microbiol.11, 161–170 (2000).Google Scholar
  22. McClung C.R., Patriquin D.G.: Isolation of a nitrogen-fixingCampylobacter species from the roots ofSpartina alternifloraLoisel.Can.J.Microbiol.26, 881–886 (1980).PubMedGoogle Scholar
  23. MIDI (Microbial Diagnostics), Newark (Delaware); http://www.midi-inc.com (1999).Google Scholar
  24. Miketová P., Moore I.M., Pasvogel A., Khailova L., Schram K.H., Hunter J.J., Kaemingk K.L.: Determination of phospholipids as biomarkers of brain tissue damage in acute lymphoblastic leukemia patients.Sci.Pap.Univ.Pardubice Ser.A8, 73–91 (2002).Google Scholar
  25. Olsen G.J., Overbeek R., Larsen N., March T.O., McCaughey J., Maciukenas M.A., Kuan W.M., Macke T.J., Xing Y., Woese C.R.: The ribosomal data base project.Nucl.Acids Res.20, 2199–2220 (1992).PubMedGoogle Scholar
  26. Phillips C.A.: Arcobacters as emerging human foodborne pathogens.Food Control12, 1–6 (2001a).CrossRefGoogle Scholar
  27. Philips C.A.:Arcobacter spp. in food: isolation, identification and control.Trends Food Sci.Technol.12, 263–275 (2001b).CrossRefGoogle Scholar
  28. Šabatková Z., Pazlarová J., Demnerová K.: Sample processing effect on polymerase chain reaction used for identification ofCampytobacter jejum.Fona Microbiol.49, 693–698 (2004).CrossRefGoogle Scholar
  29. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J.: Revision ofCampylobacter, Helicobacter, andWolinella taxonomy: emendation of generic descriptions and proposal ofArcobacter gen.nov.Internat.J.Syst.Bacteriol.41, 88–103 (1991).Google Scholar
  30. Vandamme P., Vancanneyt M., Pot B., Mels L., Hoste B., Dewettinck D., Vlaes L., Van Den Borre C., Higgins R., Hommez J., Kersters K., Butzler J.P., Goosens H.: Polyphasis taxonomic study of the emended genusArcobacter withArcobacter butzleri comb.nov. andArcobacter skirrowii sp.nov., an aerotolerant bacterium isolated from veterinary specimen.Internat.J.Syst.Bacteriol.42, 344–356 (1992).CrossRefGoogle Scholar
  31. Vandenberg O., Dediste A., Houf K., Ibekwem S., Souayah H., Cadranel S., Douat N., Zissis G., Butzler J.P., Vandamme P.:Arcobacter species in humans.Emerg.Infect.Dis.10, 1863–1867 (2004).PubMedGoogle Scholar
  32. Vytřasová J., Pejchalová M., Harsová K., Binová S.: Isolation ofArcobacter butzleri, Arcobacter cryaerophilus in samples of meats and from meat-processing plants by a culture technique and detection by PCR.Folia Microbiol.47, 227–232 (2002).Google Scholar
  33. Wesley I.V., Baetz A.L., Larson D.J.: Infection of cesarean-derived celostrum-deprived 1-day-old piglets withArcobacter butzleri, Arcobacter cryaerophilus, andArcobacter skirrowii.Infect.Immun.64, 2295–2299 (1996).PubMedGoogle Scholar
  34. Zelles L.: Fatty acids patterns of microbial phospholipids and lipopolysacharides, pp. 80–93 in F. Schinner, R. Ohlinger, E. Kandeler, R. Margesin (Eds):Methods in Soil Biology, Springer-Verlag, New York 1995.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • D. Jelínek
    • 1
  • P. Miketová
    • 2
  • L. Khailová
    • 1
  • K. H. Schram
    • 1
  • I. M. (Ki) Moore
    • 2
  • J. Vytřasová
    • 3
  1. 1.College of PharmacyUniversity of ArizonaTucsonUSA
  2. 2.College of NursingUniversity of ArizonaTucsonUSA
  3. 3.Department of Biological and Biochemical SciencesUniversity of PardubicePardubiceCzechia

Personalised recommendations