Skip to main content
Log in

Low intensity ultrasound as a supporter of cartilage regeneration and its engineering

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ultrasound (US) is being used widely in clinic for diagnostic and therapeutic purposes, but clinical utilization of low intensity ultrasound (LIUS) has been very limited. However, therapeutic potential of LIUS has been reported in animal models of musculoskeletal system disorders, and its application is being expanded in various fields. This review will focus on the application of LIUS on the cartilage tissue engineering and repair of cartilage disorder such as osteoarthritis (OA). We will introduce our experimental results showing the LIUS effects on the chondrocyte viability, proliferation and matrix protein synthesisin vitro, and its application in the cartilage tissue engineering using mesenchymal stem cells (MSCs)in vivo. Also the current status on the issues will be discussed by comparing our results with those of other laboratories. In conclusion, we suggest that LIUS is an efficient and clinically applicable method for cartilage tissue engineering and cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shung, K. K. (2004) Ultrasound and tissue interaction.Encycl. Biomat. Biomed. Eng. pp. 1706–1714.

  2. Dalecki, D. (2004) Mechanical bioeffects of ultrasound.Annu. Rev. Biomed. Eng. 6: 229–248.

    Article  CAS  Google Scholar 

  3. Merino, G., Y. N. Kalia, M. B. Delgado-Charro, R. O. Potts, and R. H. Guy (2003) Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis.J. Control Release 88: 85–94.

    Article  CAS  Google Scholar 

  4. Feril, L. B. Jr. and T. Kondo (2004) Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound.J. Radiat. Res. 45: 479–489.

    Article  Google Scholar 

  5. Liu, J., I. Sekiya, K. Asai, T. Tada, T. Kato, and N. Matsui (2001) Biosynthetic response of cultured articular chondrocytes to mechanical vibration.Res. Exp. Med. (Berl). 200: 183–193.

    CAS  Google Scholar 

  6. Parvizi, J., C.-C. Wu, D. G. Lewallen, J. F. Greenleaf, and M. E. Bolander (1999) Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression.J. Orthop. Res. 17: 488–494.

    Article  CAS  Google Scholar 

  7. Deng, C. X., F. Sieling, H. Pan, and J. Cui (2004) Ultrasound-induced cell membrane porosity.Ultrasound Med. Biol. 30: 519–526.

    Article  Google Scholar 

  8. Duarte, L. R. (1983) The stimulation of bone growth by ultrasound.Arch. Orthop. Trauma Surg. 101: 153–159.

    Article  CAS  Google Scholar 

  9. Hadjiargyrou, M., K. McLeod, J. P. Ryaby, and C. Rubin (1998) Enhancement of fracture healing by low intensity ultrasound.Clin. Orthop. Relat. Res. 355 Suppl: S216-S219.

    Article  Google Scholar 

  10. Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound.J. Bone Joint Surg. Am. 76: 26–34.

    CAS  Google Scholar 

  11. Pilla, A. A., M. A. Mont, P. R. Nasser, S. A. Khan, M. Figueiredo, J. J. Kaufman, and R. S. Siffert (1990) Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit.J. Orthop. Trauma 4: 246–253.

    Article  CAS  Google Scholar 

  12. Wiltink, A., P. J. Nijweide, W. A. Oosterbaan, R. T. Hekkenberg, and P. J. M. Helders (1995) Effect of therapeutic ultrasound on endochondral ossification.Ultrasound Med. Biol. 21: 121–127.

    Article  CAS  Google Scholar 

  13. Rantanen, J., O. Thorsson, P. Wollmer, T. Hurme, and H. Kalimo (1999) Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury.Am. J. Sports Med. 27: 54–59.

    CAS  Google Scholar 

  14. Enwemeka, C. S., O. Rodriguez, and S. Mendosa (1990) The biomechanical effects of low-intensity ultrasound on healing tendons.Ultrasound Med. Biol. 16: 801–807.

    Article  CAS  Google Scholar 

  15. Cook, S. D., S. L. Salkeld, L. S. Popich-Patron, J. P. Ryaby, D. G. Jones, and R. L. Barrack (2001) Improved cartilage repair after treatment with low-intensity pulsed ultrasound.Clin. Orthop. Relat. Res. 391 Suppl: S231-S243.

    Article  Google Scholar 

  16. Nieminen, H. J., S. Saarakkala, M. S. Laasanen, J. Hirvonen, J. S. Jurvelin, and J. Toyras (2004) Ultrasound attenuation in normal and spontaneously degenerated articular cartilage.Ultrasound Med. Biol. 30: 493–500.

    Article  Google Scholar 

  17. Miller, M. W. (2000) Gene transfection and drug delivery.Ultrasound Med. Biol. 26 Suppl 1: S59-S62.

    Article  Google Scholar 

  18. Wei, W., B. Zheng-zhong, W. Yong-jie, Z. Qing-wu, and M. Ya-lin (2004) Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control.J. Ultrasound Med. 23: 1569–1582.

    Google Scholar 

  19. Kost, J. (1993) Ultrasound for controlled delivery of therapeutics.Clin. Mater. 13: 155–161.

    Article  CAS  Google Scholar 

  20. Park, S. R., K. W. Jang, S.-H. Park, H. S. Cho, C. Z. Jin, M. J. Choi, S. I. Chung, and B.-H. Min (2005) The effect of sonication on simulated osteoarthritis. Part I: Effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium.Ultrasound Med. Biol. 31: 1551–1558.

    Article  Google Scholar 

  21. Mow, V. C., C. C. Wang, and C. T. Hung (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage.Osteoarthr. Cartil. 7: 41–58.

    Article  CAS  Google Scholar 

  22. Hung, C. T., D. R. Henshaw, C. C. Wang, R. L. Mauck, F. Raia, G. Palmer, P. H. Chao, V. C. Mow, A. Ratcliffe, and W. B. Valhmu (2000) Mitogen-activated protein kinase signaling in bovine articular chondrocytes in response to fluid flow dose not require calcium mobilization.J. Biomech. 33: 73–80.

    Article  CAS  Google Scholar 

  23. Frank, E. H. and A. J. Grodzinsky (1987) Cartilage electromechanics —II. A continuum model of cartilage electrokinetics and correlation with experiments.J. Biomech. 20: 629–639.

    Article  CAS  Google Scholar 

  24. Garcia, A. M., E. H. Frank, P. E. Grimshaw, and A. J. Grodzinsky (1996) Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.Arch. Biochem. Biophys. 333: 317–325.

    Article  CAS  Google Scholar 

  25. Setton, L. A., V. C. Mow, and D. S. Howell (1995) Mechanical behavior of articular cartilage in shear is altered by transection of the anterior cruciate ligament.J. Orthop. Res. 13: 473–482.

    Article  CAS  Google Scholar 

  26. Setton, L. A., V. C. Mow, F. J. Muller, J. C. Pita, and D. S. Howell (1997) Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization.Osteoarthr. Cartil. 5: 1–16.

    Article  CAS  Google Scholar 

  27. Grandolfo, M., A. Calabrese, and P. D'Andrea (1998) Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells.J. Bone Miner. Res. 13: 443–453.

    Article  CAS  Google Scholar 

  28. Wright, M. O., K. Nishida, C. Bavington, J. L. Godolphin, E. Dunne, S. Walmsley, P. Jobanputra, G. Nuki, and D. M. Salter (1997) Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: Evidence of a role for α5β1 integrin as a chondrocyte mechanoreceptor.J. Orthop. Res. 15: 742–747.

    Article  CAS  Google Scholar 

  29. Zhang, Z.-J., J. Huckle, C. A. Francomano, and R. G. S. Spencer (2003) The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production.Ultrasound Med. Biol. 29: 1645–1651.

    Article  Google Scholar 

  30. Huang, M.-H., H.-J. Ding, C.-Y. Chai, Y.-F. Huang, and R.-C. Yang (1997) Effects of sonication on articular cartilage in experimental osteoarthritis.J. Rheumatol. 24: 1978–1984.

    CAS  Google Scholar 

  31. Choi, B. H., J.-I. Woo, B.-H. Min, and S. R. Park (2006) Low-intensity ultrasound (LIUS) stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture.J. Biomed. Mater. Res. A 79: 858–864.

    Google Scholar 

  32. Doan, N., P. Reher, S. Meghji, and M. Harris (1999)In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes.J. Oral Maxillofac. Surg. 57: 409–419.

    Article  CAS  Google Scholar 

  33. Harle, J., V. Salih, F. Mayia, J. C. Knowles, and I. Olsen (2001) Effects of ultrasound on the growth and function of bone and periodontal ligament cellsin vitro.Ultrasound Med. Biol. 27: 579–586.

    Article  CAS  Google Scholar 

  34. Tsai, W. C., C. C. Hsu, F. T. Tang, S. W. Chou, Y. J. Chen, and J. H. Pang (2005) Ultrasound stimulation of tendon cell proliferation and upregulation of proliferating cell nuclear antigen.J. Orthop. Res. 23: 970–976.

    Article  CAS  Google Scholar 

  35. Nishikori, T., M. Ochi, Y. Uchio, S. Maniwa, H. Kataoka, K. Kawasaki, K. Katsube, and M. Kuriwaka (2002) Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel.J. Biomed. Mater. Res. 59: 201–206.

    Article  CAS  Google Scholar 

  36. Min, B.-H., J.-I. Woo, H.-S. Cho, B. H. Choi, S.-J. Park, M. J. Choi, and S. R. Park (2006) Effects of low-intensity ultrasound (LIUS) stimulation on human cartilage explants.Scand. J. Rheumatol. 35: 305–311.

    Article  Google Scholar 

  37. Hollander, A. P., T. F. Heathfield, C. Webber, Y. Iwata, R. Bourne, C. Rorabeck, and A. R. Poole (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay.J. Clin. Invest. 93: 1722–1732.

    Article  CAS  Google Scholar 

  38. Hollander, A. P., I. Pidoux, A. Reiner, C. Rorabeck, R. Bourne, and A. R. Poole (1995) Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration,J. Clin. Invest. 96:2859–2869.

    Article  CAS  Google Scholar 

  39. Yang, K. H., J. Parvizi, S.-J. Wang, D. G. Lewallen, R. R. Kinnick, J. F. Greenleaf, and M. E. Bolander (1996) Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture modelJ. Orthop. Res. 14: 802–809.

    Article  CAS  Google Scholar 

  40. Zhang, Z.-J., J. Huckle, C. A. Francomano, and R. G. S. Spencer (2002) The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study.Ultrasound Med. Biol. 28:1547–1553.

    Article  Google Scholar 

  41. Giannoni, P., A. Crovace, M. Malpeli, E. Maggi, R. Arbico, R. Cancedda, and B. Dozin (2005) Species variability in the differentiation potential ofin vitro-expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models.Tissue Eng. 11: 237–248.

    Article  CAS  Google Scholar 

  42. Mott, J. D. and Z. Werb (2004) Regulation of matrix biology by matrix metalloproteinases.Curr. Opin. Cell Biol. 16: 558–564.

    Article  CAS  Google Scholar 

  43. Mort, J. S. and C. J. Billington (2001) Articular cartilage and changes in arthritis: Matrix degradation.Arthritis Res. 3: 337–341.

    Article  CAS  Google Scholar 

  44. Kafienah, W., F. Al-Fayez, A. P. Hollander, and M. D. Barker (2003) Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach.Arthritis Rheum. 48: 709–718.

    Article  CAS  Google Scholar 

  45. Mix, K. S., M. B. Sporn, C. E. Brinckerhoff, D. Eyre, and D. J. Schurman (2004) Novel inhibitors of matrix metalloproteinase gene expression as potential therapies for arthritis.Clin. Orthop. Relat. Res. 427 Suppl: S129-S137.

    Article  Google Scholar 

  46. Noel, D., D. Gazit, C. Bouquet, F. Apparailly, C. Bony, P. Plence, V. Millet, G. Turgeman, M. Perricaudet, J. Sany, and C. Jorgensen (2004) Short-term BMP-2 expression is sufficient forin vivo osteochondral differentiation of mesenchymal stem cells.Stem Cells 22: 74–85.

    Article  CAS  Google Scholar 

  47. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells.Science 284: 143–147.

    Article  CAS  Google Scholar 

  48. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo (1998)In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp. Cell Res. 238: 265–272.

    Article  CAS  Google Scholar 

  49. Ma, H. L., S. C. Hung, S. Y. Lin, Y. L. Chen, and W. H. Lo (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads.J. Biomed. Mater. Res. A 64: 273–281.

    Article  Google Scholar 

  50. Mizuta, H., S. Kudo, E. Nakamura, Y. Otsuka, K. Takagi, and Y. Hiraki (2004) Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage.Osteoarthr. Cartil. 12: 586–596.

    Article  Google Scholar 

  51. Indrawattana, N., G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka, and A. Bunyaratvej (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell.Biochem. Biophys. Res. Commun. 320: 914–919.

    Article  CAS  Google Scholar 

  52. Mastrogiacomo, M., R. Cancedda, and R. Quatro (2001) Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells.Osteoarthr. Cartil. 9 Suppl A: S36-S40.

    Article  Google Scholar 

  53. Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiatedin vitro.J. Orthop. Res. 21: 451–457.

    Article  CAS  Google Scholar 

  54. O'Driscoll, S. W., F. W. Keeley, and R. B. Salter (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year.J. Bone Joint Surg. Am. 70: 595–606.

    Google Scholar 

  55. Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.J. Bone Joint Surg. Am. 76: 579–592.

    CAS  Google Scholar 

  56. Huang, C. Y., K. L. Hagar, L. E. Frost, Y. Sun, and H. S. Cheung (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells.Stem Cells 22: 313–323.

    Article  CAS  Google Scholar 

  57. Ebisawa, K., K. Hata, K. Okada, K. Kimata, M. Ueda, S. Torii, and H. Watanabe (2004) Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells.Tissue Eng. 10: 921–929.

    Article  CAS  Google Scholar 

  58. Lee, H. J., B. H. Choi, B.-H. Min, Y. S. Son, and S. R. Park (2006) Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells.Artif. Organs 30: 707–715.

    Article  CAS  Google Scholar 

  59. De Bari, C., F. Dell'Accio, and F. P. Luyten (2004) Failure ofin vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilagein vivo.Arthritis Rheum. 50: 142–150.

    Article  Google Scholar 

  60. Cui, J. H., S. R. Park, K. Park, B. H. Choi, and B.-H. Min (2007) Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formationin vivo. Tissue Eng. (under revision).

  61. Cui, J. H., K. Park, S. R. Park, and B.-H. Min (2006) Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: anin vivo study.Tissue Eng. 12: 75–82.

    Article  CAS  Google Scholar 

  62. Bai, X., Z. Xiao, Y. Pan, J. Hu, J. Pohl, J. Wen, and L. Li (2004) Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes.Biochem. Biophys. Res. Commun. 325: 453–460.

    Article  CAS  Google Scholar 

  63. Schmitt, B., J. Ringe, T. Haupl, M. Notter, R. Manz, G.-R. Burmester, M. Sittinger, and C. Kaps (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture.Differentiation 71: 567–577.

    Article  CAS  Google Scholar 

  64. Bosnakovski, D., M. Mizuno, G. Kim, T. Ishiguro, M. Okumura, T. Iwanaga, T. Kadosawa, and T. Fujinaga (2004) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system.Exp. Hematol. 32: 502–509.

    Article  CAS  Google Scholar 

  65. Park, S.-H., W. Y. Sim, S. W. Park, S. S. Yang, B. H. Choi, S. R. Park, K. Park, and B.-H. Min (2006) An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.Tissue Eng. 12: 3107–3117.

    Article  CAS  Google Scholar 

  66. Mankin, H. J. (1982) The response of articular cartilage to mechanical injury.J. Bone Joint Surg. Am. 64: 460–466.

    CAS  Google Scholar 

  67. Poole, A. R. (1999) An introduction to the pathophysiology of osteoarthritis.Front. Biosci. 4: 662–670.

    Article  Google Scholar 

  68. Ficat, R. P., C. Ficat, P. Gedeon, and J. B. Toussaint (1979) Spongialization: a new treatment for diseased patellae.Clin. Orthop. Relat Res. 144: 74–83.

    Google Scholar 

  69. Hangody, L., P. Feczko, L. Bartha, G. Bodo, and G. Kish (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle.Clin. Orthop. Relat. Res. 391 Suppl: S328-S336.

    Article  Google Scholar 

  70. Muller, B. and D. Kohn (1999) Indication for and performance of articular cartilage drilling using the Pridie method.Orthopade 28: 4–10.

    CAS  Google Scholar 

  71. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.N. Engl. J. Med. 331: 889–895.

    Article  CAS  Google Scholar 

  72. Peterson, L., T. Minas, M. Brittberg, A. Nilson, E. Sjogren-Jansson, and A. Lindahl (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee.Clin. Orthop. Relat. Res. 374: 212–234.

    Article  Google Scholar 

  73. Hunziker, E. B. (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects.Osteoarthr. Cartil. 10: 432–463.

    Article  CAS  Google Scholar 

  74. Huang, M. H., R. C. Yang, H. J. Ding, and C. Y. Chai (1999) Ultrasound effect on level of stress proteins and arthritic histology in experimental arthritis.Arch. Phys. Med. Rehabil. 80: 551–556.

    Article  CAS  Google Scholar 

  75. Park, S. R., S.-H. Park, K. W. Jang, H. S. Cho, J. H. Cui, H. J. An, M. J. Choi, S. I. Chung, and B.-H. Min (2005) The effect of sonication on simulated osteoarthritis. Part II: Alleviation of osteoarthritis pathogenesis by 1 MHz ultrasound with simultaneous hyaluronate injection.Ultrasound Med. Biol. 31: 1559–1566.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Ra Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, BH., Choi, B.H. & Park, S.R. Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. Biotechnol. Bioprocess Eng. 12, 22–31 (2007). https://doi.org/10.1007/BF02931799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931799

Keywords

Navigation