Biotechnology and Bioprocess Engineering

, Volume 12, Issue 1, pp 22–31 | Cite as

Low intensity ultrasound as a supporter of cartilage regeneration and its engineering

  • Byoung-Hyun Min
  • Byung Hyune Choi
  • So Ra Park


Ultrasound (US) is being used widely in clinic for diagnostic and therapeutic purposes, but clinical utilization of low intensity ultrasound (LIUS) has been very limited. However, therapeutic potential of LIUS has been reported in animal models of musculoskeletal system disorders, and its application is being expanded in various fields. This review will focus on the application of LIUS on the cartilage tissue engineering and repair of cartilage disorder such as osteoarthritis (OA). We will introduce our experimental results showing the LIUS effects on the chondrocyte viability, proliferation and matrix protein synthesisin vitro, and its application in the cartilage tissue engineering using mesenchymal stem cells (MSCs)in vivo. Also the current status on the issues will be discussed by comparing our results with those of other laboratories. In conclusion, we suggest that LIUS is an efficient and clinically applicable method for cartilage tissue engineering and cartilage repair.


low intensity ultrasound cartilage tissue engineering osteoarthritis chondrocytes mesenchymal stem cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shung, K. K. (2004) Ultrasound and tissue interaction.Encycl. Biomat. Biomed. Eng. pp. 1706–1714.Google Scholar
  2. 2.
    Dalecki, D. (2004) Mechanical bioeffects of ultrasound.Annu. Rev. Biomed. Eng. 6: 229–248.CrossRefGoogle Scholar
  3. 3.
    Merino, G., Y. N. Kalia, M. B. Delgado-Charro, R. O. Potts, and R. H. Guy (2003) Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis.J. Control Release 88: 85–94.CrossRefGoogle Scholar
  4. 4.
    Feril, L. B. Jr. and T. Kondo (2004) Biological effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound.J. Radiat. Res. 45: 479–489.CrossRefGoogle Scholar
  5. 5.
    Liu, J., I. Sekiya, K. Asai, T. Tada, T. Kato, and N. Matsui (2001) Biosynthetic response of cultured articular chondrocytes to mechanical vibration.Res. Exp. Med. (Berl). 200: 183–193.Google Scholar
  6. 6.
    Parvizi, J., C.-C. Wu, D. G. Lewallen, J. F. Greenleaf, and M. E. Bolander (1999) Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression.J. Orthop. Res. 17: 488–494.CrossRefGoogle Scholar
  7. 7.
    Deng, C. X., F. Sieling, H. Pan, and J. Cui (2004) Ultrasound-induced cell membrane porosity.Ultrasound Med. Biol. 30: 519–526.CrossRefGoogle Scholar
  8. 8.
    Duarte, L. R. (1983) The stimulation of bone growth by ultrasound.Arch. Orthop. Trauma Surg. 101: 153–159.CrossRefGoogle Scholar
  9. 9.
    Hadjiargyrou, M., K. McLeod, J. P. Ryaby, and C. Rubin (1998) Enhancement of fracture healing by low intensity ultrasound.Clin. Orthop. Relat. Res. 355 Suppl: S216-S219.CrossRefGoogle Scholar
  10. 10.
    Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound.J. Bone Joint Surg. Am. 76: 26–34.Google Scholar
  11. 11.
    Pilla, A. A., M. A. Mont, P. R. Nasser, S. A. Khan, M. Figueiredo, J. J. Kaufman, and R. S. Siffert (1990) Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit.J. Orthop. Trauma 4: 246–253.CrossRefGoogle Scholar
  12. 12.
    Wiltink, A., P. J. Nijweide, W. A. Oosterbaan, R. T. Hekkenberg, and P. J. M. Helders (1995) Effect of therapeutic ultrasound on endochondral ossification.Ultrasound Med. Biol. 21: 121–127.CrossRefGoogle Scholar
  13. 13.
    Rantanen, J., O. Thorsson, P. Wollmer, T. Hurme, and H. Kalimo (1999) Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury.Am. J. Sports Med. 27: 54–59.Google Scholar
  14. 14.
    Enwemeka, C. S., O. Rodriguez, and S. Mendosa (1990) The biomechanical effects of low-intensity ultrasound on healing tendons.Ultrasound Med. Biol. 16: 801–807.CrossRefGoogle Scholar
  15. 15.
    Cook, S. D., S. L. Salkeld, L. S. Popich-Patron, J. P. Ryaby, D. G. Jones, and R. L. Barrack (2001) Improved cartilage repair after treatment with low-intensity pulsed ultrasound.Clin. Orthop. Relat. Res. 391 Suppl: S231-S243.CrossRefGoogle Scholar
  16. 16.
    Nieminen, H. J., S. Saarakkala, M. S. Laasanen, J. Hirvonen, J. S. Jurvelin, and J. Toyras (2004) Ultrasound attenuation in normal and spontaneously degenerated articular cartilage.Ultrasound Med. Biol. 30: 493–500.CrossRefGoogle Scholar
  17. 17.
    Miller, M. W. (2000) Gene transfection and drug delivery.Ultrasound Med. Biol. 26 Suppl 1: S59-S62.CrossRefGoogle Scholar
  18. 18.
    Wei, W., B. Zheng-zhong, W. Yong-jie, Z. Qing-wu, and M. Ya-lin (2004) Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control.J. Ultrasound Med. 23: 1569–1582.Google Scholar
  19. 19.
    Kost, J. (1993) Ultrasound for controlled delivery of therapeutics.Clin. Mater. 13: 155–161.CrossRefGoogle Scholar
  20. 20.
    Park, S. R., K. W. Jang, S.-H. Park, H. S. Cho, C. Z. Jin, M. J. Choi, S. I. Chung, and B.-H. Min (2005) The effect of sonication on simulated osteoarthritis. Part I: Effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium.Ultrasound Med. Biol. 31: 1551–1558.CrossRefGoogle Scholar
  21. 21.
    Mow, V. C., C. C. Wang, and C. T. Hung (1999) The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage.Osteoarthr. Cartil. 7: 41–58.CrossRefGoogle Scholar
  22. 22.
    Hung, C. T., D. R. Henshaw, C. C. Wang, R. L. Mauck, F. Raia, G. Palmer, P. H. Chao, V. C. Mow, A. Ratcliffe, and W. B. Valhmu (2000) Mitogen-activated protein kinase signaling in bovine articular chondrocytes in response to fluid flow dose not require calcium mobilization.J. Biomech. 33: 73–80.CrossRefGoogle Scholar
  23. 23.
    Frank, E. H. and A. J. Grodzinsky (1987) Cartilage electromechanics —II. A continuum model of cartilage electrokinetics and correlation with experiments.J. Biomech. 20: 629–639.CrossRefGoogle Scholar
  24. 24.
    Garcia, A. M., E. H. Frank, P. E. Grimshaw, and A. J. Grodzinsky (1996) Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.Arch. Biochem. Biophys. 333: 317–325.CrossRefGoogle Scholar
  25. 25.
    Setton, L. A., V. C. Mow, and D. S. Howell (1995) Mechanical behavior of articular cartilage in shear is altered by transection of the anterior cruciate ligament.J. Orthop. Res. 13: 473–482.CrossRefGoogle Scholar
  26. 26.
    Setton, L. A., V. C. Mow, F. J. Muller, J. C. Pita, and D. S. Howell (1997) Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization.Osteoarthr. Cartil. 5: 1–16.CrossRefGoogle Scholar
  27. 27.
    Grandolfo, M., A. Calabrese, and P. D'Andrea (1998) Mechanism of mechanically induced intercellular calcium waves in rabbit articular chondrocytes and in HIG-82 synovial cells.J. Bone Miner. Res. 13: 443–453.CrossRefGoogle Scholar
  28. 28.
    Wright, M. O., K. Nishida, C. Bavington, J. L. Godolphin, E. Dunne, S. Walmsley, P. Jobanputra, G. Nuki, and D. M. Salter (1997) Hyperpolarisation of cultured human chondrocytes following cyclical pressure-induced strain: Evidence of a role for α5β1 integrin as a chondrocyte mechanoreceptor.J. Orthop. Res. 15: 742–747.CrossRefGoogle Scholar
  29. 29.
    Zhang, Z.-J., J. Huckle, C. A. Francomano, and R. G. S. Spencer (2003) The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production.Ultrasound Med. Biol. 29: 1645–1651.CrossRefGoogle Scholar
  30. 30.
    Huang, M.-H., H.-J. Ding, C.-Y. Chai, Y.-F. Huang, and R.-C. Yang (1997) Effects of sonication on articular cartilage in experimental osteoarthritis.J. Rheumatol. 24: 1978–1984.Google Scholar
  31. 31.
    Choi, B. H., J.-I. Woo, B.-H. Min, and S. R. Park (2006) Low-intensity ultrasound (LIUS) stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture.J. Biomed. Mater. Res. A 79: 858–864.Google Scholar
  32. 32.
    Doan, N., P. Reher, S. Meghji, and M. Harris (1999)In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes.J. Oral Maxillofac. Surg. 57: 409–419.CrossRefGoogle Scholar
  33. 33.
    Harle, J., V. Salih, F. Mayia, J. C. Knowles, and I. Olsen (2001) Effects of ultrasound on the growth and function of bone and periodontal ligament cellsin vitro.Ultrasound Med. Biol. 27: 579–586.CrossRefGoogle Scholar
  34. 34.
    Tsai, W. C., C. C. Hsu, F. T. Tang, S. W. Chou, Y. J. Chen, and J. H. Pang (2005) Ultrasound stimulation of tendon cell proliferation and upregulation of proliferating cell nuclear antigen.J. Orthop. Res. 23: 970–976.CrossRefGoogle Scholar
  35. 35.
    Nishikori, T., M. Ochi, Y. Uchio, S. Maniwa, H. Kataoka, K. Kawasaki, K. Katsube, and M. Kuriwaka (2002) Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel.J. Biomed. Mater. Res. 59: 201–206.CrossRefGoogle Scholar
  36. 36.
    Min, B.-H., J.-I. Woo, H.-S. Cho, B. H. Choi, S.-J. Park, M. J. Choi, and S. R. Park (2006) Effects of low-intensity ultrasound (LIUS) stimulation on human cartilage explants.Scand. J. Rheumatol. 35: 305–311.CrossRefGoogle Scholar
  37. 37.
    Hollander, A. P., T. F. Heathfield, C. Webber, Y. Iwata, R. Bourne, C. Rorabeck, and A. R. Poole (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay.J. Clin. Invest. 93: 1722–1732.CrossRefGoogle Scholar
  38. 38.
    Hollander, A. P., I. Pidoux, A. Reiner, C. Rorabeck, R. Bourne, and A. R. Poole (1995) Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration,J. Clin. Invest. 96:2859–2869.CrossRefGoogle Scholar
  39. 39.
    Yang, K. H., J. Parvizi, S.-J. Wang, D. G. Lewallen, R. R. Kinnick, J. F. Greenleaf, and M. E. Bolander (1996) Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture modelJ. Orthop. Res. 14: 802–809.CrossRefGoogle Scholar
  40. 40.
    Zhang, Z.-J., J. Huckle, C. A. Francomano, and R. G. S. Spencer (2002) The influence of pulsed low-intensity ultrasound on matrix production of chondrocytes at different stages of differentiation: an explant study.Ultrasound Med. Biol. 28:1547–1553.CrossRefGoogle Scholar
  41. 41.
    Giannoni, P., A. Crovace, M. Malpeli, E. Maggi, R. Arbico, R. Cancedda, and B. Dozin (2005) Species variability in the differentiation potential ofin vitro-expanded articular chondrocytes restricts predictive studies on cartilage repair using animal models.Tissue Eng. 11: 237–248.CrossRefGoogle Scholar
  42. 42.
    Mott, J. D. and Z. Werb (2004) Regulation of matrix biology by matrix metalloproteinases.Curr. Opin. Cell Biol. 16: 558–564.CrossRefGoogle Scholar
  43. 43.
    Mort, J. S. and C. J. Billington (2001) Articular cartilage and changes in arthritis: Matrix degradation.Arthritis Res. 3: 337–341.CrossRefGoogle Scholar
  44. 44.
    Kafienah, W., F. Al-Fayez, A. P. Hollander, and M. D. Barker (2003) Inhibition of cartilage degradation: a combined tissue engineering and gene therapy approach.Arthritis Rheum. 48: 709–718.CrossRefGoogle Scholar
  45. 45.
    Mix, K. S., M. B. Sporn, C. E. Brinckerhoff, D. Eyre, and D. J. Schurman (2004) Novel inhibitors of matrix metalloproteinase gene expression as potential therapies for arthritis.Clin. Orthop. Relat. Res. 427 Suppl: S129-S137.CrossRefGoogle Scholar
  46. 46.
    Noel, D., D. Gazit, C. Bouquet, F. Apparailly, C. Bony, P. Plence, V. Millet, G. Turgeman, M. Perricaudet, J. Sany, and C. Jorgensen (2004) Short-term BMP-2 expression is sufficient forin vivo osteochondral differentiation of mesenchymal stem cells.Stem Cells 22: 74–85.CrossRefGoogle Scholar
  47. 47.
    Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells.Science 284: 143–147.CrossRefGoogle Scholar
  48. 48.
    Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo (1998)In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp. Cell Res. 238: 265–272.CrossRefGoogle Scholar
  49. 49.
    Ma, H. L., S. C. Hung, S. Y. Lin, Y. L. Chen, and W. H. Lo (2003) Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads.J. Biomed. Mater. Res. A 64: 273–281.CrossRefGoogle Scholar
  50. 50.
    Mizuta, H., S. Kudo, E. Nakamura, Y. Otsuka, K. Takagi, and Y. Hiraki (2004) Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage.Osteoarthr. Cartil. 12: 586–596.CrossRefGoogle Scholar
  51. 51.
    Indrawattana, N., G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka, and A. Bunyaratvej (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell.Biochem. Biophys. Res. Commun. 320: 914–919.CrossRefGoogle Scholar
  52. 52.
    Mastrogiacomo, M., R. Cancedda, and R. Quatro (2001) Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells.Osteoarthr. Cartil. 9 Suppl A: S36-S40.CrossRefGoogle Scholar
  53. 53.
    Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone (2003) Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiatedin vitro.J. Orthop. Res. 21: 451–457.CrossRefGoogle Scholar
  54. 54.
    O'Driscoll, S. W., F. W. Keeley, and R. B. Salter (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year.J. Bone Joint Surg. Am. 70: 595–606.Google Scholar
  55. 55.
    Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.J. Bone Joint Surg. Am. 76: 579–592.Google Scholar
  56. 56.
    Huang, C. Y., K. L. Hagar, L. E. Frost, Y. Sun, and H. S. Cheung (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells.Stem Cells 22: 313–323.CrossRefGoogle Scholar
  57. 57.
    Ebisawa, K., K. Hata, K. Okada, K. Kimata, M. Ueda, S. Torii, and H. Watanabe (2004) Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells.Tissue Eng. 10: 921–929.CrossRefGoogle Scholar
  58. 58.
    Lee, H. J., B. H. Choi, B.-H. Min, Y. S. Son, and S. R. Park (2006) Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells.Artif. Organs 30: 707–715.CrossRefGoogle Scholar
  59. 59.
    De Bari, C., F. Dell'Accio, and F. P. Luyten (2004) Failure ofin vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilagein vivo.Arthritis Rheum. 50: 142–150.CrossRefGoogle Scholar
  60. 60.
    Cui, J. H., S. R. Park, K. Park, B. H. Choi, and B.-H. Min (2007) Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formationin vivo. Tissue Eng. (under revision).Google Scholar
  61. 61.
    Cui, J. H., K. Park, S. R. Park, and B.-H. Min (2006) Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: anin vivo study.Tissue Eng. 12: 75–82.CrossRefGoogle Scholar
  62. 62.
    Bai, X., Z. Xiao, Y. Pan, J. Hu, J. Pohl, J. Wen, and L. Li (2004) Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes.Biochem. Biophys. Res. Commun. 325: 453–460.CrossRefGoogle Scholar
  63. 63.
    Schmitt, B., J. Ringe, T. Haupl, M. Notter, R. Manz, G.-R. Burmester, M. Sittinger, and C. Kaps (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture.Differentiation 71: 567–577.CrossRefGoogle Scholar
  64. 64.
    Bosnakovski, D., M. Mizuno, G. Kim, T. Ishiguro, M. Okumura, T. Iwanaga, T. Kadosawa, and T. Fujinaga (2004) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system.Exp. Hematol. 32: 502–509.CrossRefGoogle Scholar
  65. 65.
    Park, S.-H., W. Y. Sim, S. W. Park, S. S. Yang, B. H. Choi, S. R. Park, K. Park, and B.-H. Min (2006) An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells.Tissue Eng. 12: 3107–3117.CrossRefGoogle Scholar
  66. 66.
    Mankin, H. J. (1982) The response of articular cartilage to mechanical injury.J. Bone Joint Surg. Am. 64: 460–466.Google Scholar
  67. 67.
    Poole, A. R. (1999) An introduction to the pathophysiology of osteoarthritis.Front. Biosci. 4: 662–670.CrossRefGoogle Scholar
  68. 68.
    Ficat, R. P., C. Ficat, P. Gedeon, and J. B. Toussaint (1979) Spongialization: a new treatment for diseased patellae.Clin. Orthop. Relat Res. 144: 74–83.Google Scholar
  69. 69.
    Hangody, L., P. Feczko, L. Bartha, G. Bodo, and G. Kish (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle.Clin. Orthop. Relat. Res. 391 Suppl: S328-S336.CrossRefGoogle Scholar
  70. 70.
    Muller, B. and D. Kohn (1999) Indication for and performance of articular cartilage drilling using the Pridie method.Orthopade 28: 4–10.Google Scholar
  71. 71.
    Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.N. Engl. J. Med. 331: 889–895.CrossRefGoogle Scholar
  72. 72.
    Peterson, L., T. Minas, M. Brittberg, A. Nilson, E. Sjogren-Jansson, and A. Lindahl (2000) Two-to 9-year outcome after autologous chondrocyte transplantation of the knee.Clin. Orthop. Relat. Res. 374: 212–234.CrossRefGoogle Scholar
  73. 73.
    Hunziker, E. B. (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects.Osteoarthr. Cartil. 10: 432–463.CrossRefGoogle Scholar
  74. 74.
    Huang, M. H., R. C. Yang, H. J. Ding, and C. Y. Chai (1999) Ultrasound effect on level of stress proteins and arthritic histology in experimental arthritis.Arch. Phys. Med. Rehabil. 80: 551–556.CrossRefGoogle Scholar
  75. 75.
    Park, S. R., S.-H. Park, K. W. Jang, H. S. Cho, J. H. Cui, H. J. An, M. J. Choi, S. I. Chung, and B.-H. Min (2005) The effect of sonication on simulated osteoarthritis. Part II: Alleviation of osteoarthritis pathogenesis by 1 MHz ultrasound with simultaneous hyaluronate injection.Ultrasound Med. Biol. 31: 1559–1566.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  • Byoung-Hyun Min
    • 1
    • 2
  • Byung Hyune Choi
    • 3
  • So Ra Park
    • 4
  1. 1.Department of Orthopedic Surgery, School of MedicineAjou UniversitySuwonKorea
  2. 2.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea
  3. 3.Research Institute for Medical ScienceInha University College of MedicineIncheonKorea
  4. 4.Department of PhysiologyInha University College of MedicineIncheonKorea

Personalised recommendations