Journal of Genetics

, 75:125 | Cite as

Adaptive evolution at the molecular level of the duplicatedAmy gene system inDrosophila

  • Nobuyuki Inomata
  • Tsuneyuki Yamazaki


Analyses of the nucleotide sequences of the duplicatedAmy genes in the eight species of theDrosophila melanogaster species subgroup have revealed concerted evolution of the coding regions and divergent evolution between the duplicated genes of the 5’-flanking regions. Homogenization between the duplicated genes in the coding region is maintained by frequent genetic exchange in various portions of the coding region. On the other hand, such genetic exchange seems to produce a large amount of DNA sequence variation and protein polymorphism at the two loci within a species. The puzzling observation that concerted evolution is restricted to the coding regions seems to be explained by not only adaptive evolution of the AMY proteins in speciation but also adaptive fixation of selectively advantageous mutations in the intergenic region that differentiate expression of the twoAmy genes. We review molecular work on theAmy gene system inDrosophila, including evidence from biochemical characterization of the AMY proteins and molecular characterization of the cis regulatory elements.


Adaptive evolution amylase duplicated genes Drosophila 


  1. Abe K. 1958 Genetical and biochemical studies on amylase inDrosophila melanogaster.Jpn. J. Genet. 33: 138–145CrossRefGoogle Scholar
  2. Abraham I. and Doane W. W. 1978 Genetic regulation of tissue-specific expression of amylase structural genes inDrosophila melanogaster.Proc. Natl. Acad. Sci. USA 75: 4446–4450PubMedCrossRefGoogle Scholar
  3. Ashburner M., Bodmer M. and Lemeunier F. 1984 On the evolutionary relationships ofDrosophila melanogaster.Dev. Genet. 4: 295–312CrossRefGoogle Scholar
  4. Benkel B. F. and Hickey D. A. 1986a Glucose repression of amylase gene expression inDrosophila melanogaster.Genetics 114: 137–144PubMedGoogle Scholar
  5. Benkel B. F. and Hickey D. A. 1986b The interaction of genetic and environmental factors in the control of amylase gene expression inDrosophila melanogaster.Genetics 114: 943–954PubMedGoogle Scholar
  6. Boer P. H. and Hickey D. A. 1986 The alpha-amylase gene inDrosophila melanogaster. Nucleotide sequence, gene structure and expression motifs.Nucl. Acids Res. 14: 8399–8411PubMedCrossRefGoogle Scholar
  7. Brown C. J., Aquadro C. F. and Anderson W. W. 1990 DNA sequence evolution of the amylase multigene family inDrosophila pseudoobscura.Genetics 126: 131–138PubMedGoogle Scholar
  8. Cariou M. L. 1987 Biochemical phylogeny of the eight species in theDrosophila melanogaster subgroup, includingD. sechellia andD.orena. Genet. Res. 50: 181–185CrossRefGoogle Scholar
  9. Choi J. I. and Yamazaki T. 1994 Molecular analysis ofcis-regulatory sequences of the a-amylase gene inD. melanogaster: a short 5’-fianking region ofAmy distal gene is required for full expression ofAmy proximal gene.Jpn. J. Genet. 69: 619–635PubMedCrossRefGoogle Scholar
  10. Couturier G., Lachaise D. and Tsacas L. 1985 Le Drosophilidae et leurs gîtes larvaires dans la forêt dense humide de Taï en Côte-d’Ivoire.Rev. Fr. Entomol. (N. S) (1986) 7: 291–307Google Scholar
  11. Dainou O., Cariou M. L., David J. R. and Hickey D. A. 1987Amylase gene duplication: an ancestral trait in theDrosophila melanogaster species subgroup.Heredity 59: 245–251PubMedCrossRefGoogle Scholar
  12. Da Lage J. L. and Cariou M. L. 1993 Organization and structure of the amylase gene family. InDrosophila ananassae. Genetical and biological aspects (ed.) Y. N. Tobari (Tokyo: Japan Scientific Societies Press, and Basel: Karger) p. 171Google Scholar
  13. Da Lage J. L., Lemeum’er F., Cariou M. L. and David J. R. 1992 Multiple amylase genes inDrosophila ananassae and related species.Genet. Res. 59: 85–92PubMedGoogle Scholar
  14. De Jong G., Hoorn A. J. W., Thorig G. E. W. and Scharloo W. 1972 Frequencies of amylase variants inDrosophila melanogaster.Nature 238: 542–453CrossRefGoogle Scholar
  15. Doane W. W. 1969Amylase variants inDrosophila melanogaster: Linkage studies and characterization of enzyme extracts.J. Exp. Zool. 171: 321–342CrossRefGoogle Scholar
  16. Doane W. W., Gemmill R. M., Schwartz P. E., Hawley S. A. and Norman R. A. 1987 Structural organization of the a-amylase gene locus inDrosophila melanogaster andDrosophila miranda.Isozymes 14: 229–260PubMedGoogle Scholar
  17. Eanes W. F., Kirchner M. and Yoon J. 1993 Evidence for adaptive evolution of theG6pd gene in theDrosophila melanogaster andDrosophila simulans lineages.Proc. Natl Acad. Sci. USA 90: 7475–7479PubMedCrossRefGoogle Scholar
  18. Eisses K. T., Dijk H. V. and Van Delden W. 1979 Genetic differentiation within themelanogaster species group of the genusDrosophila (Sophophora).Evolution 33: 1063–1068CrossRefGoogle Scholar
  19. Gemmill R. M., Levy J. N. and Doane W. W. 1985 Molecular cloning of alpha-amylase genes fromDrosophila melanogaster. I. Clone isolation by use of mouse probe.Genetics 110: 299–312PubMedGoogle Scholar
  20. Gemmill R. M., Schwartz P. E. and Doane W. W. 1986 Structural organization of theAmy locus in seven strains ofDrosophila melanogaster.Nucl. Acids Res. 14: 5337–5352PubMedCrossRefGoogle Scholar
  21. Hawley S. A., Norman R. A., Brown C. J., Doane W. W., Anderson W. W. and Hickey D. A. 1990Amylase gene expression in intraspecific and interspecific somatic transformants ofDrosophila.Genome 33: 501–508PubMedGoogle Scholar
  22. Hawley S. A., Doane W. W and Norman R. A. 1992 Molecular analysis ofcis-regulatory sequences at the α-amylase locus inDrosophila melanogaster.Biochem. Genet. 30: 257–277PubMedGoogle Scholar
  23. Hickey D. A. 1979 The geographical pattern of an enzyme polymorphism inD. melanogaster.Genetica 51: 1–4CrossRefGoogle Scholar
  24. Hickey D.A. and Benkel B. 1982 Regulation of amylase activity inDrosophila melanogaster: Effects of dietary carbohydrate.Biochem. Genet. 20: 1117–1129PubMedCrossRefGoogle Scholar
  25. Hoorn A. J. W. and Scharloo W. 1978 The functional significance of amylase polymorphism inDrosophila melanogaster V. The effect of food components on amylase and α-glucosidase activity.Genetica 49: 181–187CrossRefGoogle Scholar
  26. Inomata N., Shibata H., Okuyama E. and Yamazaki T. 1995a Evolutionary relationships and sequence variation of α-amylase variants encoded by duplicated genes in theAmy locus ofDrosophila melanogaster.Genetics 141: 237–244PubMedGoogle Scholar
  27. Inomata N., Kanda K., Cariou M. L., Tachida H. and Yamazaki T. 1995b Evolution of the response patterns to dietary carbohydrates and the developmental differentiation of gene expression of α-amylase inDrosophila.J. Mol. Evol. 41: 1076–1084PubMedCrossRefGoogle Scholar
  28. Jeffs P. S., Holmes E. C. and Ashburner M. 1994 The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in theDrosophila melanogaster species subgroup.Mol. Biol. Evol. 11: 287–304PubMedGoogle Scholar
  29. Kikkawa H. 1964 An electrophoretic study on amylase inDrosophila melanogaster.Jpn. J. Genet. 39: 401–411CrossRefGoogle Scholar
  30. Kimura M. 1983The neutral theory of molecular evolution (New York: Cambridge University Press)Google Scholar
  31. Kimura M. and Ohta T. 1971 Protein polymorphism as a phase of molecular evolution.Nature 229: 467–469PubMedCrossRefGoogle Scholar
  32. Klarenberg A. J., Visser A. J. S., Willemse M. F. M. and Scharloo W. 1986 Genetic localization and action of regulatory genes and elements for tissue-specific expression of α-amylase inDrosophila melanogaster.Genetics 114: 1131–1145PubMedGoogle Scholar
  33. Langley C. H., Shrimpton A. E., Yamazaki T., Miyashita N., Matsuo Y. and Aquadro C. F. 1988 Naturally occurring variation in restriction map of theAmy region ofDrosophila melanogaster.Genetics 119: 619–629PubMedGoogle Scholar
  34. Levy J. N., Gemmill R. M. and Doane W. W. 1985 Molecular cloning of alpha-amylase genes fromDrosophila melanogaster. II. Clone organization and verification.Genetics 110: 313–324PubMedGoogle Scholar
  35. McDonald J. H. and Kreitman M. 1991 Adaptive protein evolution at theAdh locus inDrosophila.Nature 351: 652–654PubMedCrossRefGoogle Scholar
  36. Magoulas C., Bally-Cuif L., Loverre-Chyurlia A., Benkel B. and Hickey D. A. 1993a A short 5’-flanking region mediates glucose repression of amylase gene expression inDrosophila melanogaster.Genetics 134: 507–515PubMedGoogle Scholar
  37. Magoulas C., Loverre-Chyurlia A., Abukashawa S., Bally-Cuif L. and Hickey D. A. 1993 b Functional conservation of a glucose-repressible amylase gene promoter fromDrosophila virilis inDrosophila melanogaster.J. Mol. Evol. 36: 234–242PubMedCrossRefGoogle Scholar
  38. Martin P. F., Martin A., Osmani A. and Sofer W. 1986 A transient expression assay for tissue-specific gene expression of alcohol dehydrogenases inDrosophila.Dev. Biol. 117: 574–580PubMedCrossRefGoogle Scholar
  39. Matsuo Y. and Yamazaki T. 1984 Genetic analysis of natural populations ofDrosophila melanogaster in Japan. IV. Natural selection on the inducibility, but not on the structural genes, of amylase loci.Genetics 108: 879–896PubMedGoogle Scholar
  40. Matsuo Y. and Yamazaki T. 1986 Genetic analysis of natural populations ofDrosophila melanogaster in Japan. VI. Differential regulation of amylase activity in different environments.Jpn. J. Genet. 61: 543–558CrossRefGoogle Scholar
  41. Nei M. 1975Molecular population genetics and evolution (Amsterdam: North Holland)Google Scholar
  42. Norman R. A. and Doane W. W. 1990 Dosage compensation and dietary glucose repression of larval amylase activity inDrosophila miranda.Biochem. Genet. 28: 601–613PubMedCrossRefGoogle Scholar
  43. Ohnishi S., Kawanishi M. and Watanabe T. K. 1983 Biochemical phytogenies ofDrosophila: protein differences detected by two-dimensional electrophoresis.Genetica 61: 55–63CrossRefGoogle Scholar
  44. Ohno S. 1970Evolution by gene duplication (New York: Springer-Verlag)Google Scholar
  45. Ohta T. 1988 Multigene and supergene.families. InOxford surveys in evolutionary biology (eds) P. H. Harvey and L. Partridge (Oxford: Oxford University Press) vol. 5, p. 41Google Scholar
  46. Okuyama E., Shibata H., Tachida H. and Yamazaki T. 1996 Molecular evolution of the 5’-fianking regions of the duplicatedAmy genes inDrosophila melanogaster species subgroup.Mol. Biol. Evol. (in press)Google Scholar
  47. Payant V., Abukashawa S., Sasseville M., Hickey D. A. and David J. 1988 Evolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of theDrosophila melanogaster species subgroup.Mol. Biol. Evol. 5: 560–567PubMedGoogle Scholar
  48. Powell J. R., Rico M. and Andjelkovic M. 1980 Population genetics ofDrosophila amylase III. Interspecific variation.Evolution 34: 209–213CrossRefGoogle Scholar
  49. Rio B., Couturier G., Lemeunier F. and Lachaise D. 1983 Evolution d’une specialisation saisoniere chezDrosophila erecta (Dipt., Drosophilidae).Ann. Soc. Ent.Fr. (N. S.) 19: 235–248Google Scholar
  50. Shibata H. and Yamazaki T. 1994 A comparative study of the enzymological features of α-amylase in theDrosophila melanogaster species subgroup.Jpn. J. Genet. 69: 251–258PubMedCrossRefGoogle Scholar
  51. Shibata H. and Yamazaki T. 1995 Molecular evolution of the duplicatedAmy locus inDrosophila melanogaster species subgroup: concerted evolution only in coding region and excess of nonsynonymous substitutions in speciation.Genetics 141: 223–236PubMedGoogle Scholar
  52. Singh R. S., Hickey D. A. and David J. 1982 Genetic differentiation between geographically distant populations ofDrosophila melanogaster.Genetics 101: 235–256PubMedGoogle Scholar
  53. Solignac M., Monnerot M. and Mounlou J. C. 1986 Mitochondrial DNA evolution in themelanogaster species subgroup ofDrosophila.J. Mol. Evol. 23: 31–40PubMedCrossRefGoogle Scholar
  54. Yamazaki T. 1986 Genetic analysis of natural populations ofDrosophila melanogaster in Japan. V. Genetic variabilities of amylase activities in different developmental stages and their relation to fitness.Jpn. J. Genet. 61: 329–336CrossRefGoogle Scholar
  55. Yamazaki T. and Matsuo Y. 1984 Genetic analysis of natural populations ofDrosophila melanogaster in Japan. III. Genetic variability of inducing factors of amylase and fitness.Genetics 108: 223–235PubMedGoogle Scholar
  56. Yamazaki T., Matsuo Y., Inoue Y. and Matsuo Y. 1984 Genetic analysis of natural populations ofDrosophila melanogaster in Japan. I. Protein polymorphism, lethal gene, sterility gene, inversion polymorphism, and linkage disequilibrium.Jpn. J. Genet. 59: 33–49CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Nobuyuki Inomata
    • 1
  • Tsuneyuki Yamazaki
    • 1
  1. 1.Laboratory of Population Genetics, Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations