Folia Microbiologica

, Volume 51, Issue 6, pp 591–597 | Cite as

The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil



The analysis of the bacterial community within the soil using DGGE showed acrylonitrile (ACN) could lead to the selection of significantly similar communities. Moreover,Rhodococcus sp. AJ270 was successfully established in the soil community. High GC G+-bacteria also responded positively to ACN addition. Bioaugmentation or carbon addition had no impact on the rate or degree of ACN degradation. ACN could be readily degraded by the soil bacteria, however, the community structure was significantly affected by its addition as well as by the addition of carbon orRhodococcus sp. AJ270. The bioaugmentation of the soil with this strain was successful, in that the organism became established within the community. ACN addition to a soil produces statistically significant changes in the bacterial community.


Bacterial Community Acrylonitrile Soil Community Styrene Oxide Nitrile Hydratase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





colony-forming unit(s)


denaturing gradient gel electrophoresis


phosphate-buffered saline


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfani F., Cantarella M., Spera A., Viparelli P.: Operational stability ofBrevibacterium imperialis CBS 489-74 nitrile hydratase.J.Mol.Cat.B: Enz. 11, 687–697 (2001).CrossRefGoogle Scholar
  2. Altschul S.E., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., Lipman D.L.: Gapped BLAST and PSL-BLAST a new generation of protein database search programs.Nucl.Acids Res. 25, 3389–3402 (1997).CrossRefPubMedGoogle Scholar
  3. Aulenta F., Bianchi A., Majone M., Papini M.P., Potalivo M., Tandoi V.: Assessment of natural or enhancedin situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study.Environ.Internat. 31, 185–190 (2003).CrossRefGoogle Scholar
  4. Baxter J., Cummings S.P.: The impact of bioaugmentation on metal cyanide degradation and soil bacteria community structure.Biodegraation, in press (2006).Google Scholar
  5. Blakey A.J., Colby J., Williams E., O’Reilly C.: Regio- and stereo-specific nitrile hydrolysis by the nitrile hydratase fromRhodococcus AJ270.FEMS Microbiol.Lett. 129, 57–62 (1995).Google Scholar
  6. Brandao P.F.B., Clapp J.P., Bull A.T.: Discrimination and taxonomy of geographically diverse strains of nitrile-metabolizing actinomycetes using chemometric and molecular sequencing techniques.Environ.Microbiol. 4, 262–276 (2002).CrossRefPubMedGoogle Scholar
  7. Cunningham C.J., Ivshina I.B., Lozinsky V.I., Kuyukina M.S., Philip J.C.: Bioremediation of diesel-contaminated soil by microorganisms immobilized in polyvinyl alcohol.Internat.Biodeter.Biodegr. 54, 167–174 (2004).CrossRefGoogle Scholar
  8. Deshkar A., Dhamorikar N., Godbole S., Krishnamurthi K., Saravanadevi S., Vijay R., Kaul S., Chakrabarti T.: Bioremediation of soil contaminated with organic compounds with special reference to acrylonitrile.Annal.Chim. 93, 729–737 (2003).Google Scholar
  9. Dhillon J.K., Shivaraman N.: Biodegradation of cyanide compounds by aPseudomonas species (S1).Can.J.Microbiol. 45, 201–208 (1999).CrossRefPubMedGoogle Scholar
  10. Donberg P.A., Odelson D.A., Klecka G.M., Markham D.A.: Biodegradation of acrylonitrile in soil.Environ.Toxicol.Chem. 11, 1583–1594 (1992).CrossRefGoogle Scholar
  11. Drobnica L’., Majtán V., Šturdík E., Miko M.: Effect of 2,3-dinitrilo-1,4-dithia-9,10-anthraquinone onMycobacterium smegmatis.Folia Microbiol. 25, 403–411 (1980).CrossRefGoogle Scholar
  12. Hartman S., Smits J.P., Van de Werf M.J., Volkering F., de Bont J.A.M.: Metabolism of styrene oxide and 2-phenylethanol in the styrene-degradingXanthobacter strain 124X.Appl.Environ.Microbiol. 55, 2850–2855 (1989).Google Scholar
  13. Hazardous Substances Data Base (HSDB): U.S. National Library of Medicine: (2000).Google Scholar
  14. Hu H.Y., Fujie K., Nozawa M., Makabe T., Urano K.: Effects of biodegradable substrates and microbial concentration on the acclimation of microbes to acrylonitrile in aerobic submerged biofilter.Water Sci.Technol. 38, 81–89 (1998).CrossRefGoogle Scholar
  15. Komeda H., Kobayashi M., Shimizu S.: A novel gene cluster including theRhodococcus rhodochrous JlnhlBA genes encoding a low molecular mass nitrile hydratase (1-NHase) induced by its reaction product.J.Biol.Chem. 271, 15796–15802 (1996).CrossRefPubMedGoogle Scholar
  16. McBride K.E., Kenny J.W., Stalker D.M.: Metabolism of the herbicide bromoxynil byKlebsiella pneumoniae subsp.ozaenae.Appl.Environ.Microbiol. 52, 325–330 (1986).PubMedGoogle Scholar
  17. Miller J.M., Gray D.O.: The utilization of nitriles and amides by aRhodococcus species.J.Gen.Microbiol. 128, 1803–1809 (1982).Google Scholar
  18. Munn S.J., Allanou R., Aschberger K., Berthault F., de Bruijn J., Luotamo M., Musset C., O’Connor S., Pakalin S., Paya-Perez A., Pellegrini G., Scheer S., Vegro S.:European Union Risk Assessment Report, Vol. 32. EUR 20857 EN (2004).Google Scholar
  19. Muyzer G., Dewaal E.C., Uitterlinden A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S ribosomal RNA.Appl.Environ.Microbiol. 59, 695–700 (1993).PubMedGoogle Scholar
  20. Neužil J., Krištůfek V., Blumauerová M.: Enzymic degradation of bromoxynil by cell-free extracts ofStreptomyces felleus.Folia Microbiol. 33, 349–354 (1988).CrossRefGoogle Scholar
  21. Olano C., Moss S.J., Brana A.F., Sheridan R.M., Math V., Weston A.J., Mendez C., Leadlay P.F., Wilkinson B., Salas J.A.: Biosynthesis of the angiogenesis inhibitor borrelidin byStreptomyces parvulus Tu4055: insights into nitrile formation.Mol.Microbiol. 52, 1745–1756 (2004).CrossRefPubMedGoogle Scholar
  22. O’Reilly C., Turner P.D.: The nitrilase family of CN hydrolyzing a enzymes — a comparative study.J.Appl.Microbiol. 95, 1161–1174 (2003).CrossRefPubMedGoogle Scholar
  23. Reyes G.F., Corbett D., Benz F.W., Doyle R.J.: Aerylonitrile induces autolysisBacillus subtilis.FEMS Microbiol.Lett. 182, 255–258 (2000).CrossRefPubMedGoogle Scholar
  24. Roach P.C.J., Ramsden D.K., Hughes J., Williams P.: Biocatalytic scrubbing of gaseous acrylonitrile usingRhodococcus rubber immobilized on synthetic silicone polymer (ImmobaSil™) rings.Biotechnol.Bioeng. 85, 450–455 (2004).CrossRefPubMedGoogle Scholar
  25. Rowan A.K., Snape J.R., Fearnside D., Barer M.R., Curtis T.P., Head I.M.: Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater.FEMS Microbiol.Ecol. 43, 195–206 (2003).CrossRefPubMedGoogle Scholar
  26. Sanna P., Carta A., Nikookar M.E.R.: Synthesis and antitubercular activity of 3-aryl substituted-2-(1H(2H)benzotriazol-1(2)-yl)-acrylonitriles.Eur.J.Med.Chem. 35, 535–543 (2000).CrossRefPubMedGoogle Scholar
  27. Saroja N., Shamala T.R., Tharanathan R.N.: Biodegradation of starch-γ-polyacrylonitrile, a packaging material byBacillus cereus.Process Biochem. 36, 119–125 (2000).CrossRefGoogle Scholar
  28. Simon M.A., Bonner J.S., Page C.A., Townsend R.T., Mueller D.C., Fuller C.B., Autenrieth R.L.: Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland.Ecol.Eng. 22, 263–277 (2004).CrossRefGoogle Scholar
  29. Singh S.K., Gurusiddaiah S., Whalen J.W.: Treponemycin, a nitrile antibiotic active againstTreponema hyodysenteriae.Antimicrob.Agent Chemother. 27, 239–245 (1985).Google Scholar
  30. Vejvoda V., Kaplan O., Klozova J., Masák J., Čejková A., Jirků V., Stloukal R., Martinkova L.: Mild hydrolysis of nitriles byFusarium solam strain OI.Folia Microbiol. 51, 251–256 (2006).CrossRefGoogle Scholar
  31. Venosa A.D., Suidan M.T., Wrenn B.A., Stroheimer K.L., Haines J.R., Eberhart B.L., King D., Holder E.: Bioremediation of an experimental oil spill on the shoreline of Delaware Bay.Environ.Sci.Technol. 30, 1764–1775 (1996).CrossRefGoogle Scholar
  32. Vezzuli L., Pruzzo C., Fabiano M.: Response of the bacterial community toin situ bioremediation of organic-rich sediments.Marine Poll.Bull. 49, 740–751 (2004).CrossRefGoogle Scholar
  33. Wyatt J.M., Knowles C.J.: Microbial degradation of acrylonitrile waste effluents: the degradation of effluents and condensates from the manufacture of acrylonitrile.Internat.Biodet.Biodegr. 35, 227–248 (1995).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  1. 1.Biomolecular and Biomedical Research Centre, School of Applied SciencesNorthumbria UniversityNewcastle-upon-TyneUK
  2. 2.School of Applied Sciences, Ellison BuildingNorthumbria UniversityNewcastle-upon-TyneUK
  3. 3.Department of Infection, Immunity & InflammationUniversity of LeicesterLeicesterUK

Personalised recommendations