Folia Microbiologica

, Volume 49, Issue 4, pp 435–440 | Cite as

Comparison of light and dark nitrogenase activity in selected soil cyanobacteria



Frequency of heterocytes and nitrogenase activity (NA) under light and dark cultivation conditions was determined in 12 cyanobacterial strains isolated from various soil habitats. In spite of a high variability, significant differences in NA among the strains were found in response of light and dark cultivation. Relatively high NA (9.9–15.3 µmol/h C2H4 per g fresh mass) under light conditions and basal NA after 12 h of dark cultivation were detected inAnabaena, Nodularia, Tolypothrix, and 1 ofCylindrospermum strains. On the other hand, significantly lower NA (0.76–5.4 µmol/h C2H4 per g fresh mass) was found under light conditions inTrichormus, Nostoc and anotherCylindrospermum strain; the activity completely disappeared after 12 h of dark cultivation. NA values were not directly related to the frequency of the heterocytes. The total NA of cyanobacterial colony was found to be probably independent of the number and/or position of heterocytes. Remarkable differences in NA between strains isolated from cultivated fields and strains originating from natural or non-cultivated soils were found.


Nitrogen Fixation Fresh Mass Biological Nitrogen Fixation Cyanobacterial Culture Dark Cultivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown D.E.: Aeration in the submerged culture of microorganisms.Meth.Microbiol. 2, 125–174 (1970).CrossRefGoogle Scholar
  2. Čerňáková M., Kurucová M., Fuchsová D.: Effect of the herbicide Bentanex on soil microorganisms and their activity.Folia Microbiol. 36, 561–566 (1991).CrossRefGoogle Scholar
  3. Čerňáková M.: Effect of the insecticide Nerametrine EK-15 on the activity of soil microorganisms.Folia Microbiol. 38, 331–334 (1993).CrossRefGoogle Scholar
  4. DeLuca T.H., Drinkwater L.E., Wiefling B.A., DeNicola D.M.: Free-living nitrogen-fixing bacteria in temperate cropping systems: influence of nitrogen source.Biol.Fert.Soils 23, 140–144 (1996).CrossRefGoogle Scholar
  5. Dong Z.: The N2-fixing bacterium from the apoplast of sugarcane: localization, isolation and characterization.PhD Thesis. Carleton University, Ottawa (Canada) 1995.Google Scholar
  6. El-Zahraa F., Zaki T.: Effect of boron and calcium on growth and nitrogen fixation of the blue-green algaCalothrix parietina.Folia Microbiol. 44, 201–204 (1999).CrossRefGoogle Scholar
  7. Ernst A., Bohme H.: Control of hydrogen-dependent nitrogenase activity by adenylase and electron flow in heterocysts ofAnabaena variabilis ATCC-29413.Biochim.Biophys.Acta 767, 362–368 (1984).CrossRefGoogle Scholar
  8. Fay P., Stewart W.D.P., Walshby A.E., Fogg G.E.: Is the heterocyst the site of nitrogen fixation in blue-green algae?Nature 220, 810–812 (1968).CrossRefPubMedGoogle Scholar
  9. Fleming H., Haselkorn R.: Differentiation inNostoc muscorum: nitrogenase is synthetized in heterocytsts.Proc.Nat.Acad.Sci.USA 70, 2727–2731 (1973).CrossRefPubMedCentralPubMedGoogle Scholar
  10. Gollerbakh M.M., Shtina E.A.:Soil Algae. (In Russian) Nauka, Leningrad 1969.Google Scholar
  11. Hardy R.W.G., Burns R.C., Holsten R.D.: Application of the acetylene-ethylene assay for measurement of nitrogen fixation.Soil. Biol.Biochem. 5, 47–81 (1973).CrossRefGoogle Scholar
  12. Hrouzek P., Šimek M., Komárek J.: Nitrogenase activity and diversity of six soilNostoc strains.Arch.Hydrobiol. 108 (Suppl.), 87–101 (2003).Google Scholar
  13. Kashyap A.P., Pandey K.D., Gupta P.K.: Nitrogenase activity of the antarctic cyanobacteriumNostoc commune — influence of temperature.Folia Microbiol. 36, 557–560 (1991).CrossRefGoogle Scholar
  14. Komárek J., Anagnostidis K.: Modern approach to classification system ofCyanophytes 4 —Nostocales.Arch.Hydrobiol. 56 (Suppl.). 247–345 (1989).Google Scholar
  15. Liu X.-J., Chen F.: Cell differentiation and colony alteration of an edible terrestrial cyanobacteriumNostoc flagelliforme, in liquid suspension cultures.Folia Microbiol. 48, 619–626 (2003).CrossRefGoogle Scholar
  16. Lukešová A.: Soil algae in four secondary succesional stages on abandoned fields.Arch.Hydrobiol. 71 (Suppl.), 81–102 (1993).Google Scholar
  17. Maršálek B., Šimek M., Smith R.J.: The effect of ecdysterone on the cyanobacteriumNostoc 6720.Z.Naturforsch. 47C, 726–730 (1992).Google Scholar
  18. Mullineaux P.M., Gallon J.R., Chaplin A.E.: Acetylene reduction (nitrogen fixation) by cyanobacteria growth under alternating light-dark cycle.FEMS Microbiol.Lett. 10, 245–247 (1981).CrossRefGoogle Scholar
  19. Ohmori M., Hattori A.: Effect of nitrate on nitrogen fixation by blue-green algae,Anabaena cyhndrica.Plant Cell Physiol. 13, 589–599 (1972).Google Scholar
  20. Pan B., Vessey K.: Response of the endophytic diazotrophicGluconacetobacter diazotrophicus on solid media to changes in atmospheric partial O2 pressure.Appl.Environ.Microbiol. 67, 4694–4700 (2001).CrossRefPubMedCentralPubMedGoogle Scholar
  21. Roger P.A., Watanabe I.: Technologies for utilizing biological nitrogen fixation in wetland rice: potentialities, current usage, and limiting factors.Fertil.Res. 9, 39–77 (1986).CrossRefGoogle Scholar
  22. Roger P.A., Simpson I., Oficial R., Ardales S., Jimenez R.: Effects of pesticides on soil and water microflora and mesofauna in wetland rice fields: a summary of current knowledge and extrapolation to temperate environments.Austral.J.Exp.Agric. 34, 1057–1068 (1994).CrossRefGoogle Scholar
  23. Rowell P., Enticott S., Stewart W.D.P.: Glutamine synthetase and nitrogenase activity in blue-green algaAnabaena cylindrica.New Phytol. 79, 41–54 (1977).CrossRefGoogle Scholar
  24. Shah V., Garg N., Madamwar D.: Ultrastructure of the cyanobacteriumNostoc muscorum and exploitation of the culture for hydrogen production.Folia Microbiol. 48, 65–70 (2003).CrossRefGoogle Scholar
  25. Šimek M., Vacek V., Ulehlova B.: A study of nitrogen fixation by stands of white clover (Trifolium repens L.). (In Czech)Rostl. Vyroba 33, 279–291 (1987).Google Scholar
  26. Šimek M., Maršálek B.: Evidence for abscisic acid-caused enhancement of nitrogenase activity inTrichormus variabilis.Arch. Hydrobiol. 67 (Suppl.), 91–102 (1992).Google Scholar
  27. Stanier R.Y., Cohen-Bazire G.: Phototrophic procaryotes: the cyanobacteria.Ann.Rev.Microbiol. 31, 225–274 (1977).CrossRefGoogle Scholar
  28. Van Gorkom H.J., Donze M.: Localization of nitrogen fixation inAnabaena.Nature 234, 231–232 (1971).CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  1. 1.Department of Botany, Faculty of Biological SciencesUniversity of South BohennaČeska BudéjoviceCzechia
  2. 2.Institute of Soil BiologyAcademy of Sciences of the Czech RepublicČeske BudějoviceCzechia

Personalised recommendations