Folia Microbiologica

, Volume 51, Issue 5, pp 413–424 | Cite as

Exploration of yeast alkali metal cation/H+ antiporters: Sequence and structure comparison

  • L. Přibylová
  • K. Papoušková
  • M. Zavřel
  • J. -L. Souciet
  • H. Sychrová


TheSaccharomyces cerevisiae genome contains three genes encoding alkali metal cation/H+ antiporters (Nha1p, Nhx1p, Kha1p) that differ in cell localization, substrate specificity and physiological function. Systematic genome sequencing of other yeast species revealed highly conserved homologous ORFs in all of them. We compared the yeast sequences both at DNA and protein levels. The subfamily of yeast endosomal/prevacuolar Nhx1 antiporters is closely related to mammalian plasma membrane NHE proteins and to both plasma membrane and vacuolar plant antiporters. The high sequence conservation within this subfamily of yeast antiporters suggests that Nhx1p is of great importance in cell physiology. Yeast Kha1 proteins probably belong to the same subfamily as bacterial antiporters, whereas Nha1 proteins form a distinct subfamily.


Lactis Alkali Metal Salt Tolerance Yeast Species Candida Glabrata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



amino acid


open reading frame


transmembrane domain(s)

Microorganisms in antiporter names


Candida albicans


Candida glabrata


Candida tropicalis


Debaryomyces hansenii var.hansenii


Kluyveromyces lactis


Pichia (Hansenula) anomala


Pichia sorbitophila


Saccharomyces bayanus


Saccharomyces castellii


Saccharomyces cerevisiae


Saccharomyces kudriavzevii


Saccharomyces mikatae


Saccharomyces paradoxus


Schizosaccharomyces pombe


Yarrowia lipolytica


Zygosaccharomyces rouxii


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali R., Brett C.L., Mukherjee S., Rao R.: Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast.J.Biol.Chem.279, 4498–4506 (2004).PubMedCrossRefGoogle Scholar
  2. Andre B.: An overview of membrane transport proteins inSaccharomyces cerevisiae.Yeast11, 1575–1611 (1995).PubMedCrossRefGoogle Scholar
  3. Baňuelos M.A., Sychrová H., Bleykasten-Grosshans C., Souciet J.-L., Potier S.: The Nha1 antiporter ofSaccharomyces cerevisiae mediates sodium and potassium efflux.Microbiology144, 2749–2758 (1998).PubMedCrossRefGoogle Scholar
  4. Baňuelos M.A., Ramos J., Calero F., Braun V., Potier S.: Cation/H+ antiporters mediate potassium and sodium fluxes inPichia sorbitophila. Cloning of thePsNHA1 andPsNHA2 genes and expression inSaccharomyces cerevistae.Yeast19, 1365–1372 (2002).PubMedCrossRefGoogle Scholar
  5. Blumwald E.: Sodium transport and salt tolerance in plants.Curr.Opin.Cell Biol.12, 431–434 (2000).PubMedCrossRefGoogle Scholar
  6. Blumwald E., Aharon G.S., Apse M.P.: Sodium transport in plant cells.Biochim.Biophys.Acta1465, 140–151 (2000).PubMedCrossRefGoogle Scholar
  7. Bowers K., Levi B.P., Patel F.I., Stevens T.H.: The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeastSaccharomyces cerevisiae.Mol.Biol.Cell.11, 4277–4294 (2000).PubMedGoogle Scholar
  8. Brett C.L., Donowitz M., Rao R.: Evolutionary origins of eukaryotic sodium/proton exchangers.Am.J.Physiol.Cell Physiol.288, C223-C239 (2005a).PubMedCrossRefGoogle Scholar
  9. Brett C.L., Tukaye D.N., Mukherjee S., Rao R.: The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking.Mol.Biol.Cell.16, 1396–1405 (2005b).PubMedCrossRefGoogle Scholar
  10. Cherry J.M., Adler C., Ball C., Chervitz S.A., Dwight S.S., Hester E.T., Jia Y.K., Juvik G., Roe T., Schroeder M., Weng S.A., Botstein D.: SGD:Saccharomyces genome database.Nucl.Acids Res.26, 73–79 (1998).PubMedCrossRefGoogle Scholar
  11. Cliften P., Sudarsanam P., Desikan A., Fulton L., Fulton B., Majors J., Waterston R., Cohen B.A., Johnston M.: Finding functional features inSaccharomyces genomes by phylogenetic footprinting.Science301, 71–76 (2003).PubMedCrossRefGoogle Scholar
  12. Devereux J., Haeberli P., Smithies O.: A comprehensive set of sequence analysis programs for the VAX.Nucl.Acids Res.12, 387–395 (1984).PubMedCrossRefGoogle Scholar
  13. Dibrov P., Smith J.J., Young P.G., Fliegel L.: Identification and localization of thesod2 gene product in fission yeast.FEBS Lett.405, 119–124 (1997).PubMedCrossRefGoogle Scholar
  14. Dibrov P., Young P.G., Fliegel L.: Functional analysis of amino acid residues essential for activity in the Na+/H+ exchanger of fission yeast.Biochemistry37, 8282–8288 (1998).PubMedCrossRefGoogle Scholar
  15. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., de Montigny J., Marck C., Neuveglise C., Talla E., Goffard N., Frangeul L., Aigle M., Anthouard V., Babour A., Barbe V., Barnay S., Blanchin S., Beckerich J.M., Beyne E., Bleykasten C., Boisrame A., Boyer J., Cattolico L., Confanioleri F., De Daruvar A., Despons L., Fabre E., Fairhead C., Ferry-Dumazet H., Groppi A., Hantraye F., Hennequin C., Jauniaux N., Joyet P., Kachouri R., Kerrest A., Koszul R., Lemaire M., Lesur I., Ma L., Muller H., Nicaud J.M., Nikolski M., Oztas S., Ozier-Kalogeropoulos O., Pellenz S., Potier S., Richard G.F., Straub M.L., Suleau A., Swennen D., Tekaia F., Wesolowski-Loovel M., Westhof E., Wirth B., Zeniou-Meyer M., Zivanovic I., Bolotin-Fukuhara M., Thierry A., Bouchier C., Caudron B., Scarpelli C., Gaillardin C., Weissenbach J., Wincker P., Souciet J.-L.: Genome evolution in yeasts.Nature430, 35–44 (2004).PubMedCrossRefGoogle Scholar
  16. Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y.: Function, intracellular localization and the importance in salt tolerance of a vaculoar Na+/H+ antiporter from rice.Plant Cell Physiol.45, 146–159 (2004).PubMedCrossRefGoogle Scholar
  17. Gerchman Y., Rimon A., Venturi M., Padan E.: Oligomerization of NhaA, the Na+/H+ antiporter ofEscherichia coli in the membrane and its functional and structural consequences.Biochemistry40, 3403–3412 (2001).PubMedCrossRefGoogle Scholar
  18. Gilstring C.F., Ljungdahl P.O.: A method for determining thein vivo topology of yeast polytopic membrane proteins demonstrates that Gap1p fully integrates into the membrane independently of Shr3p.J.Biol.Chem.275, 31488–31495 (2000).PubMedCrossRefGoogle Scholar
  19. Hofmann K., Stoffel W.: TMbase — a database of membrane spanning segments.Biol.Chem.Hoppe-Seyler374, 166–175 (1993).Google Scholar
  20. Iwaki T., Higashida Y., Tsuji H., Tamai Y., Watanabe Y.: Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeastZygosaccharomyces rouxii and functional expression ofZSOD2 andZSOD22 inSaccharomyces cerevisiae.Yeast14, 1167–1174 (1998).PubMedCrossRefGoogle Scholar
  21. Jia Z.P., McCullough N., Martel R., Hemminngsens S., Young P.G.: Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.EMBO J.11, 1631–1640 (1992).PubMedGoogle Scholar
  22. Kamauchi S., Mitsui K., Ujike S., Haga M., Nakamura N., Inoue H., Sakajo S., Ueda M., Tanaka A., Kanazawa H.: Structurally and functionally conserved domains in the diverse hydrophilic carboxy-terminal halves of various yeast and fungal Na+/H+ antiporters (Nhalp).J.Biochem.131, 821–831 (2002).PubMedGoogle Scholar
  23. Kellis M., Patterson N., Endrizzi M., Birren B., Lander E.S.: Sequencing and comparison of yeast species to identify genes and regulatory elements.Nature423, 241–254 (2003).PubMedCrossRefGoogle Scholar
  24. Kinclová O., Potier S., Sychrová H.: TheZygosaccharomyces rouxii strain CBS732 contains only one copy of theHOG1 and theSOD2 genes.J.Biotechnol.88, 151–158 (2001a).PubMedCrossRefGoogle Scholar
  25. Kinclová O., Ramos J., Potier S., Sychrová H.: Functional study of theSaccharomyces cerevisiae Nhalp C-terminus.Mol.Microbiol.40, 656–668 (2001b).PubMedCrossRefGoogle Scholar
  26. Kinclová O., Potier S., Sychrová H.: Difference in substrate specificity divides the yeast alkali-metal-cation/H+ antiporters into two subfamilies.Microbiology148, 1225–1232 (2002).PubMedGoogle Scholar
  27. Kinclová-Zimmermannová O., Flegelová H., Sychrová H.: Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters.Folia Microbiol.49, 519–525 (2004).CrossRefGoogle Scholar
  28. Kumar S., Tamura K., Jakobsen I.B., Nei M.: MEGA2: molecular evolutionary genetics analysis software.Bioinformatics17, 1244–1245 (2001).PubMedCrossRefGoogle Scholar
  29. Kyte J., Doolittle R.F.: A simple method for displaying the hydropathic character of a protein.J.Mol.Biol.157, 105–132 (1982).PubMedCrossRefGoogle Scholar
  30. Mansour M.F., Salama K.H.A., Al Mutawa M.M.: Transport proteins and salt tolerance in plants.Plant Sci.164, 891–900 (2003).CrossRefGoogle Scholar
  31. Marešova L., Sychrova H.: Physiological characterization ofSaccharomyces cerevisiae khal deletion mutants.Mol.Microbiol.55, 588–600 (2005).PubMedCrossRefGoogle Scholar
  32. McGuffin L.J., Bryson K., Jones D.T.: The PSIPRED protein structure prediction server.Bioinformatics16, 404–405 (2000).PubMedCrossRefGoogle Scholar
  33. Mewes H.W., Hani J., Pfeiffer F., Frishman D.: MIPS: a database for protein sequences and complete genomes.Nucl.Acids Res.26, 33–37 (1998).PubMedCrossRefGoogle Scholar
  34. Mitsui K., Kamauchi S., Nakamura N., Inoue H., Kanazawa H.: A conserved domain in the tail region of theSaccharomyces cerevisiae Na+/H+ antiporter (Nha1p) plays important roles in localization and salinity-resistant cell-growth.J.Biochem.135, 139–148 (2004a).PubMedCrossRefGoogle Scholar
  35. Mitsui K., Ochi F., Nakamura N., Doi Y., Inoue H., Kanazawa H.: A novel membrane protein capable of binding the Na+/H+ antiporter (Nha1p) enhances the salinity-resistant cell growth ofSaccharomyces cerevisiae.J.Biol.Chem.279, 12438–12447 (2004b).PubMedCrossRefGoogle Scholar
  36. Nass R., Rao R.: Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast — implications for vacuole biogenesis.J.Biol.Chem.273, 21054–21060 (1998).PubMedCrossRefGoogle Scholar
  37. Nass R., Rao R.: The yeast endosomal Na+/H+ exchanger, Nhxl, confers osmotolerance following acute hypertonic shock.Microbiology145, 3221–3228 (1999).PubMedGoogle Scholar
  38. Nass R., Cunningham K.W., Rao R.: Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase.J.Biol.Chem.272, 26145–26152 (1997).PubMedCrossRefGoogle Scholar
  39. Nehrke K., Melvin J.E.: The NHX family of Na+-H+ exchangers inCaenorhabditis elegans.J.Biol.Chem.277, 29036–29044 (2002).PubMedCrossRefGoogle Scholar
  40. Nelissen B., De Wachter R., Goffeau A.: Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae.FEMS Microbiol.Rev.21, 113–134 (1997).PubMedCrossRefGoogle Scholar
  41. Orlowski J., Grinstein S.: Na+/H+ exchangers of mammalian cells.J.Biol.Chem.272, 22373–22376 (1997).PubMedCrossRefGoogle Scholar
  42. Orlowski J., Grinstein S.: Diversity of the mammalian sodium/proton exchanger SLC9 gene family.Pflugers Arch.447, 549–565 (2004).PubMedCrossRefGoogle Scholar
  43. Paulsen I.T., Sliwinski M.K., Nelissen B., Goffeau A., Saier M.H.: Unified inventory of established and putative transporters encoded within the complete genome ofSaccharomyces cerevisiae.FEBS Lett.430, 116–125 (1998).PubMedCrossRefGoogle Scholar
  44. Proft M., Struhl K.: MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction.Cell118, 351–361 (2004).PubMedCrossRefGoogle Scholar
  45. Ramirez J., Ramirez O., Saldana C., Coria R., Peña A.: ASaccharomyces cerevisiae mutant lacking a K+/H+ exchanger.J.Bacteriol.180, 5860–5865 (1998).PubMedGoogle Scholar
  46. Ren Q., Kang K.H., Paulsen I.T.: Transport DB: a relational database of cellular membrane transport systems.Nucl.Acids Res.32, D284-D288 (2004).PubMedCrossRefGoogle Scholar
  47. Rodriguez-Navarro A.: Potassium transport in fungi and plants.Biochim.Biophys.Acta1469, 1–30 (2000).PubMedGoogle Scholar
  48. Saier M.H.: A functional-phylogenetic classification system for transmembrane solute transporters.Microbiol.Mol.Biol.Rev.64, 354–366 (2000).PubMedCrossRefGoogle Scholar
  49. Shi H.Z., Ishitani M., Kim C.S., Zhu J.K.: TheArabidopsis thaliana salt tolerance geneSOS1 encodes a putative Na+/H+ antiporter.Proc.Nat.Acad.Sci.USA97, 6896–6901 (2000).PubMedCrossRefGoogle Scholar
  50. Simon E., Clotet J., Calero F., Ramos J., Arino J.: A screening for high copy supressors of thesit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation.J.Biol.Chem.276, 29740–29747 (2001).PubMedCrossRefGoogle Scholar
  51. Simon E., Barcelo A., Arino J.: Mutagenesis analysis of the yeast Nhal Na+/H+ antiporter carboxy-terminal tail reveals residues required for function in cell cycle.FEBS Lett.545, 239–245 (2003).PubMedCrossRefGoogle Scholar
  52. Sonnhammer E.L., von Heijne G., Krogh A.: A hidden Markov model for predicting transmembrane helices in protein sequences.Proc.Internal.Conf.Intell.Syst.Mol.Biol.6, 175–182 (1998).Google Scholar
  53. Soong T.W., Yong T.F., Ramanan N., Wang Y.: TheCandida albicans antiporter geneCNH1 has a role in Na+ and H+ transport, salt tolerance, and morphogenesis.Microbiology146, 1035–1044 (2000).PubMedGoogle Scholar
  54. Sychrová H.: Yeast as a model organism to study transport and homeostasis of alkali-metal cations.Physiol.Res.53, S91-S98 (2004).PubMedGoogle Scholar
  55. Sychrová H., Ramírez J., Peña A.: Involvement of Nhal antiporter in regulation of intracellular pH inSaccharomyces cerevisiae.FEMS Microbiol.Lett.171, 167–172 (1999).PubMedCrossRefGoogle Scholar
  56. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.: The Clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Nucl.Acids Res.25, 4876–4882 (1997).PubMedCrossRefGoogle Scholar
  57. Tusnady G.E., Simon I.: The HMMTOP transmembrane topology prediction server.Bioinformatics17, 849–850 (2001).PubMedCrossRefGoogle Scholar
  58. Tzubery T., Rimon A., Padan E.: Mutation E252C increases drastically theKm value for Na+ and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter ofEscherichia coli.J.Biol.Chem.279, 3265–3272 (2004).PubMedCrossRefGoogle Scholar
  59. Velkova K., Sychrová H.: TheDebaryomyces hansenii NHA1 gene encodes a plasma membrane alkali-metal-cation antiporter with broad substrate specificity.Gene369, 27–34 (2006).PubMedCrossRefGoogle Scholar
  60. Watanabe Y., Miwa S., Tamai Y.: Characterization of Na+/H+-antiporter gene closely related to the salt-tolerance of yeastZygosaccharomyces rouxii.Yeast11, 829–838 (1995).PubMedCrossRefGoogle Scholar
  61. Wiebe C.A., Rieder C., Young P.G., Dibrov P., Fliegel L.: Functional analysis of amino acids of the Na+/H+ exchanger that are important for proton translocation.Mol.Cell.Biochem.254, 117–124 (2003).PubMedCrossRefGoogle Scholar
  62. Williams K.A.: Three-dimensional structure of the ion-coupled transport protein NhaA.Nature403, 112–115 (2000).PubMedCrossRefGoogle Scholar
  63. Yamaguchi T., Apse M.P., Shi H.Z., Blumwald E.: Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity.Proc.Nat.Acad.Sci.USA100, 12510–12515 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • L. Přibylová
    • 1
  • K. Papoušková
    • 1
  • M. Zavřel
    • 1
  • J. -L. Souciet
    • 2
  • H. Sychrová
    • 1
  1. 1.Department of Membrane TransportInstitute of Physiology, Academy of Sciences of the Czech RepublicPragueCzechia
  2. 2.Laboratoire de Dynamique, Evolution et Expression des Génomes de Microorganismes (FRE 2326 CNRS)Université Louis PasteurStrasbourgFrance

Personalised recommendations