Folia Microbiologica

, Volume 51, Issue 5, pp 371–374 | Cite as

Adaptive changes in fatty acids ofE. coli strains exposed to a quaternary ammonium salt and an amine oxide



Resistant strains ofEscherichia coli were obtained by stepwise cultivation in media with increasing concentration of antimicrobially active 1-(methyldodecyl)dimethylamine oxide and 1-(methyldodecyl)trimethylammonium bromide. Adaptive changes were determined in the fatty-acid (FA) composition in an isolated lipopolysaccharide sample from the outer membrane of these strains. The composition of this FA mixture from adapted strains was compared with that of FA from a sensitive strain. The differences were found in level of palmitic, heptadecanoic, heptadecenoic, heptadecadienoic and nonadecenoic acids. In addition, the adapted strains differed from each other in the content of myristic, pentadecanoic, stearic and linoleic acids.


Ammonium Salt Quaternary Ammonium Salt Amine Oxide Subinhibitory Concentration Amphiphilic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



amine oxide(s)


fatty acid(s)


fatty acid methyl ester(s)


1-(methyldodecyl)trimethylammonium bromide




outer membrane


quaternary ammonium salt(s)


1-(methyldodecyl)dimethylamine oxide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander C., Rietschel E.T.: Bacterial lipopolysaccharides and innate immunity.J.Endotox.Res. 7, 167–202 (2001).Google Scholar
  2. Bukovský M., Mlynarčík D., Nagy A., Bella J.: Outer membrane alterations inEscherichia coli cells adapted to amine oxides.Acta Fac.Pharm. 46, 153–167 (1991).Google Scholar
  3. Bukovský M., Mlynarčík D., Koščová H.: Change of immunomodulating properties ofEscherichia coli caused by artificial resistance to amine oxides. (In Slovak)Farm.Obzor 57, 59–68 (1998).Google Scholar
  4. Carty S.M., Sreekumar K.R., Raetz C.R.: Effect of cold shock on lipid A biosynthesis inEscherichia coli. Induction at 12 degrees C of an acyltransferase specific for palmitoleyl-acyl carrier protein.J.Biol.Chem. 274, 9677–9685 (1999).PubMedCrossRefGoogle Scholar
  5. Chladková K., Hendrych T., Gášková D., Goroncy-Bermes P., Sigler K.: Effect of biocides onS. cerevisiae: relationship between short-term membrane affliction and long-term cell killing.Folia Microbiol. 49, 718–724 (2004).CrossRefGoogle Scholar
  6. Čupková V., Vinter V., Devínsky F., Lacko I., Mlynarčík D.: Inhibitory effect of 1-methyldodecyldimethylamine oxide andN,N-bis(dodecyldimethyl)-1,2-ethanediammonium dibromide on the spores ofBacillus cereus.Folia Microbiol. 33, 433–439 (1988).CrossRefGoogle Scholar
  7. Dubničková M., Bukovský M., Mlynarčík D.: Activation of human leukocytes by lipid A fromE. coli strains adapted to quaternary ammonium salt and amine oxide.Folia Microbiol. 48, 543–547 (2003).CrossRefGoogle Scholar
  8. Dubois-Brissonnet F., Malgrange S., Guérin-Méchin L., Heyd B., Leveau J.Y.: Changes in fatty acid composition ofPseudomonas aeruginosa ATCC 15442 induced by growth conditions: consequences of resistance to quaternary ammonium compounds.Microbios 106, 97–110 (2001).PubMedGoogle Scholar
  9. Ferenčík M., Lacko I., Devinsky F.: Immunomodulatory activity of some amphiphilic compounds.Pharmazie 45, 695–696 (1990).PubMedGoogle Scholar
  10. Guérin-Mechin L., Dubois-Brissonnet F., Heyd B., Leveau J.Y.: Specific variations of fatty acid composition ofPseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity.J.Appl.Microbiol. 87, 735–742 (1999).PubMedCrossRefGoogle Scholar
  11. Hoštacká A., Majtán V.: Enzymic and permeability activity ofPseudomonas aeruginosa after treatment with sub-MICs of organic ammonium salts.Folia Microbiol. 39, 197–202 (1994).CrossRefGoogle Scholar
  12. Hoštacká A., Majtán V., Hybenová D.: Antimicrobial efficacy of quaternary bisammonium salts and the effect of their sub-MICs onPseudomonas aeruginosa virulence factors.Folia Microbiol. 40, 283–287 (1995).CrossRefGoogle Scholar
  13. Kawahara K., Tsukano H., Watanabe H., Lindner B., Matsuura M.: Modification of the structure and activity of lipid A inYersinia pestis lipopolysaccharide by growth temperature.Infect.Immun. 70, 4092–4098 (2002).PubMedCrossRefGoogle Scholar
  14. Kopecká-Leitmanová A., Devinsky F., Lacko I., Mlynarčík D.: Interaction of amine oxides and quaternary ammonium salts with membrane and membrane associated processes inE. coli cells. Mode of action.Drug Metab.Drug Interact. 7, 29–51 (1989).Google Scholar
  15. Kuželová M., Mladonická M., Šperglová L., Stankovič M., Jusko M., Dubničková M., Bukovský M., Adameová A., Stankovičová T., Seginko J.: Modified lipid A influences myocardial ischemia reperfusion injury at bothin vitro andin vivo conditions. (In Slovak)Farm.Obzor. 74, 251–256 (2005).Google Scholar
  16. Majtánová L’., Majtán V., Hoštacká A.: Effects of amphiphilic compounds on metabolic and biological activities ofSalmonella typhimurium.Arzneim.Forsch.Drug Res. 46, 64–67 (1996).Google Scholar
  17. McQuillen K., Roberts R.B.: The utilization of acetate for synthesis inEscherichia coli.J.Biol.Chem. 207, 81–95 (1954).PubMedGoogle Scholar
  18. Metcalfe L.D., Wang C.N.: Rapid preparation of fatty-acid methyl-esters using organic base-catalyzed trans-esterification.J.Chromatogr.Sci. 19, 530–535 (1981).Google Scholar
  19. Mueller M., Lindner B., Kusumoto S., Fukase K., Schromm A.B., Seydel U.: Aggregates are the biologically active units of endotoxin.J.Biol.Chem. 279, 26307–26313 (2004).PubMedCrossRefGoogle Scholar
  20. Rodriguez-Carvajal M.A., Tejero-Mateo P., Espartero J.L., Ruiz-Sainz J.E., Buendía-Clavería A.M., Ollero F.J., Yang S.S., Gil-Serrano A.M.: Determination of the chemical structure of the capsular polysaccharide of strain B33, a fast growing soy bean-modulating bacterium isolated from an acid region of China.Biochem.J. 357, 505–511 (2001).PubMedCrossRefGoogle Scholar
  21. Somerville J.E. Jr.,Cassiano L., Bainbridge B., Cunningham M.D.P., Darveau R.P.: A novelE. coli lipid a mutant that produces an antiinflammatory lipopolysaccharide.J.Clin.Invest. 97, 359–365 (1997).CrossRefGoogle Scholar
  22. Westphal O., Jann K.: Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure, pp. 83–91 in R.L. Whistler, J.N. BeMiller, M. Wolfrom (Eds):Methods in Carbohydrate Chemistry, Vol. 5. Academic Press, New York-London 1965.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  1. 1.Faculty of PharmacyComenius UniversityBratislavaSlovakia
  2. 2.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague

Personalised recommendations