Folia Microbiologica

, 51:359 | Cite as

Mode of action of microbial bioactive metabolites



Pathogenic microorganisms can be suppressed by cell wall destruction. Biosynthesis of peptidoglycans forming bacterial cell wall is interrupted by glycopeptides which inhibit polymerization of a disaccharide formed byN-acetylglucosamine andN-acetylmuramic acid, β-lactams and their derivatives inhibit peptidoglycan cross-linking. Antibiotics inhibiting protein synthesis bind to different sites on the rRNA and interfere with the formation of the polypeptide chain. Tumor cells resistant to chemotherapeutic drugs overproduce proteins transporting the drugs out of cells; these proteins eliminate substances which inhibit transcription of transport proteins. Some antitumor drugs (anthracyclines, fluoroquinolones, acridinesetc.) act at topoisomerases which irreversibly bind to DNA and inhibit DNA synthesis. Immunosuppressants affect various components of the immune system such as T-helper, T-effector cell function, antigen presentation and B-cell function. Antiparasitics — avermectins — bind to a receptor of this Gab-gated chlorine channel in the nerve fiber of nematodes and anthropodes, increasing the permeability of the membrane for chloride ions; the increased transport of chloride ions into the cell causes the death of the parasite. Ionophores dissolve in phospholipid bilayers and enormously increase their ionic permeability. Respiration inhibitors block the transport of electrons at several places of the respiratory chain. Rifamycin binds to the β subunit of bacterial RNA polymerase, thereby blocking mRNA synthesis. Antiviral compounds inhibit the transcription of DNA by several mechanisms or by inhibition of viral entry into host cells.


Primary Biliary Cirrhosis GlcNAc FK506 Melittin Rifamycin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



meso-2,6-diaminopimelic acid


4-aminobutyric acid (Abu)




multidrug resistance


MDR protein (1)


N-acetylmuramic acid


  1. Aeschimann J.R., Dresswr L.D., Kaatz G.W., Rybak M.J.: Effects of NorA inhibitors onin vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains ofStaphylococcus aureus.Antimicrob.Agents Chemother. 43, 335–340 (1999).Google Scholar
  2. Belova L., Tenson T., Xiong L., Mcnichols P.M., Mankin A.S.: A novel site of antibiotic action in the ribosome interaction of evernimicin with the large ribosomal subunit.Proc.Nat.Acad.Sci.USA 98, 3726–3731 (2001).PubMedCrossRefGoogle Scholar
  3. Bookchin R.M., Etzion Z., Sorette M., Mohandas N., Skepper J.N., Lew V.L.: Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells.Proc.Nat.Acad.Sci.USA 97, 8045–8050 (2000).PubMedCrossRefGoogle Scholar
  4. Brown M.J.: Mechanism and specificity of action of ribovirin.Antimicrob.Agents Chemother. 15, 747–753 (1979).Google Scholar
  5. Burg R.W., Miller B.M., Baker E.E., Birnbaum J., Currier S.A., Hartman R., Yu-Ling K., Monaglan R.L., Olson G., Putter I., Tunac J.B., Wellick H., Stampley E.O., Oiwa R., Omura S.: Avermectins, new family of potent anthelmintie agents: production organism and fermentation.Antimicrob.Agents Chemother. 15, 361–367 (1979).PubMedGoogle Scholar
  6. Chiao J.S., Yia T.H., Mei B.G., Jin Z.K., Gu W.L.: Rifamycin SV and related ansamycins. pp. 477–478 in L.C. Vining, C. Stuttard (Eds):Genetics and Biochemistry of Antibiotic Production. Butterword-Heinemann, Boston 1995.Google Scholar
  7. Chopra I., Roberts M.: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance.Microbiol.Mol.Biol.Rev. 65, 232–260 (2001).PubMedCrossRefGoogle Scholar
  8. Čikošová M., Blazsek M., Kubiš M., Gajdošíková J., Borošová G.: Biotechnological preparation of the elaiophylin.Folia Microbiol. 49, 731–736 (2004).CrossRefGoogle Scholar
  9. Dey S., Ramachandra M., Pastan I., Gattesman M.M., Ambudkar S.V.: Evidence for two nonidentical drug-interaction sites in the humanP-glycoprotein.Proc.Nat.Acad.Sci.USA 94, 10594–10599 (1997).PubMedCrossRefGoogle Scholar
  10. Ehrlich J., Cofey G.L., Fischer M.W., Hillegas A.B., Kohbeger D.I., Machamer H.E., Rightsel H.E., Roegner F.R.: 6-Diazo-5-oxo-l-norleucine, a new tumor inhibitory substance.Antibiot.Chemother. 6, 487–496 (1956).Google Scholar
  11. Farutani M., Iida T., Yamano S., Kamino K., Maruyama T.: Biochemical and genetic characterization of an FK506-sensitive peptidyl-prolylcis—trans isomerase from a thermophilic archeon.Methanococcus thermolithotropicus. J.Bacteriol. 180, 388–394 (1998).Google Scholar
  12. Feng Z., Barletta R.G.: Roles ofMycobacterium smegmatis d-alanine:d-alanine ligase andd-alanine racemase in mechanisms of action of and resistance to the peptidoglycan inhibitord-cycloserin.Antimicrob.Agents Chemother. 47, 283–291 (2003).PubMedCrossRefGoogle Scholar
  13. Fukuzava M., Shearer G.M.: Effect of cyclosporin A on T cell immunity. I. Dose-dependent suppression of different murine T-helper cell pathways.Eur.J.Immunol. 19, 49–56 (1989).CrossRefGoogle Scholar
  14. Ganoza M.C., Kiel M.C.: A ribosomal ATPase is a target for hygromycin B inhibition onEschericia coli ribosomes.Antimicrob. Agents Chemother. 45, 2813–2819 (2001).PubMedCrossRefGoogle Scholar
  15. Hancock R.E.W., Chaple D.S.: Peptide antibiotics.Antimicrob.Agents Chemother. 43, 1317–1323 (1999).PubMedGoogle Scholar
  16. Heep M., Beck D., Bayerdoerffer E., Lehn N.: Rifamin and rifabutin resistance mechanism inHelicobacter pylori.Autimicrob. Agens Chemother. 43, 1497–1499 (1999).Google Scholar
  17. Hengstler J.G., Heimerdinger C.K., Schiffer I.B., Gebhard S., Segemüller J., Tanner B., Bolt H.M., Oesch F.: Dietary topoisomerase II-posisons: contribution of soy products to infant leukemia?EXLIJ. 1, 8–14 (2002).Google Scholar
  18. Hillard J.J., Goldschmidt R.M., Licata L., Baum E.Z., Bush K.: Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems.Antimicrob.Agents Chemother. 43, 1693–1699 (1999).Google Scholar
  19. Hopps H.E., Wissemann C.L. Jr., Smadel J.E., Ho R.: Mode of action of chloramphenicol — IV.J.Bacteriol. 218, 561–567 (1956).Google Scholar
  20. Jin S., Gorfajn G., Faircloth G., Scotto W.: Ecteinascidin 743, a transcription-target chemotherapeutic that inhibits MDR1 activation.Proc.Nat.Acad.Sci.USA 97, 6775–6779 (2000).PubMedCrossRefGoogle Scholar
  21. Kagawa S.-Z., Yamashita Y., Ochiai K., Ando K., Iwasaki T., Tokiguschi T., Nakano H.: Terpentecin and UTC4B, new family of topoisomerase II targeting, antitumor antibiotic produced byStreptomyces: producing organism, fermentation and large scale purification.J.Antibiot. 48, 211–216 (1995).Google Scholar
  22. Khan S.I., Nimrod A.S., Mehropooya M., Nitiss J.L., Walker L.A., Clarl A.M.: Antifungal activity of eupolarine and its action on AND topoisomerases.Antimicrob.Agents Chemother. 46, 1785–1792 (2002).PubMedCrossRefGoogle Scholar
  23. Kim H., Xia D., Yu C.-A., Xia J.-Z., Kachurin A.M., Zhang L., Yu L., Deisenhofer J.: Inhibitor binding changes domain mobility in the iron—sulfur protein of the mitochondrialbc 1 complex from bovine heart.Proc.Nat.Acad.Sci.USA 95, 8026–8033 (1998).PubMedCrossRefGoogle Scholar
  24. Kotra L.P., Haddad J., Mobshery S.: Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance.Antimicrob.Agents Chemother. 44, 3249–3256 (2000).PubMedCrossRefGoogle Scholar
  25. Lee, Sang-Yong, Hang-Sub Kim, Young-Ho Kim, Sang-Bae Han, Hwan-Mook Kim, Soon-Duck Hong, Jung-Joon Lee: Immunosuppressive activity of elaiophylins.J.Microbiol.Bioctechnol. 7, 272–277 (1997a).Google Scholar
  26. Lee, Sang-Yong, Sang-Chul Ha, Young-Soo Hong, Soon-Duck Hong, Jung-Joon Lee: Production of elaiophylin by the strain MCY-846 in a submerged culture.J.Microbiol.Biotechnol. 7, 278–281 (1997b).Google Scholar
  27. MacNeil D.J.: Avermectins, pp. 421–442 in L.C. Vining, C. Stuttard (Eds):Genetics and Biochemistry of Antibiotic Production. Butterword—Heinemann, Boston 1995.Google Scholar
  28. Murray P.R., Pfaller M.A., Rosenthal K.S.:Medical Microbiology, 5th. ed. ASM Press, Washington (DC) 2005.Google Scholar
  29. Nagata K., Sone N., Tamura T.: Inhibitory activities of lansoprazole against respiration inHelicobacter pylori.Antimicrob.Agents Chemother. 45, 1522–1527 (2001).PubMedCrossRefGoogle Scholar
  30. Noller H.F.: Ribosomal RNA and translation.Ann.Rev.Biochem. 60, 191–227 (1991).PubMedCrossRefGoogle Scholar
  31. Ogawa H., Yamashida Y., Katahira R., Chiba S., Iwasaki T., Shizawa T., Nakano H.: UCG9, a new antitumor antibiotic produced byStreptomyces. I. Producing organism, fermentation, isolation and biological activities.J.Antibiot. 51, 261–266 (1998).PubMedGoogle Scholar
  32. Omura S., Sasaki Y., Iwai Y., Takeshima H.: Staurosporin, a potentially important gift from microorganisms.J.Antibiot. 48, 535–545 (1995).PubMedGoogle Scholar
  33. Piddock L.V., Jin Y.F., Griggs J.: Effect of hydrophobicity and molecular mass on the accumulation of fluoroquinolones byStaphylococcus aureus.J.Antimicrob.Chemother. 47, 261–270 (2001).PubMedCrossRefGoogle Scholar
  34. Rohrer S., Berger-Baechi B.: FemABX peptidyl transferase: a link between branched-chain cell wall peptide formation and β-lactam resistance in Gram-positive cocci.Antimicrob.Agents Chemother. 47, 837–846 (2003).PubMedCrossRefGoogle Scholar
  35. Russell R.G., Graveley R., Coxon F., Skjdt H., Del Pozo E., Elford P., Mackenzie A.: Cyclosporine A. Mode of action and effects on bone and joint tissues.Scand.J.Rheumatol. 95 (Suppl.), 9–18 (1992).CrossRefGoogle Scholar
  36. Sato N., Yusa K., Naito M., Tsuruo T.: Staurosporine, a potent inhibitor of C-kinase, enhances drug accumulation in multidrugresistant cells.Biochem.Biophys.Res.Commun. 173, 1252–1257 (1990).PubMedCrossRefGoogle Scholar
  37. Shim J.-H., Lee H.-K., Chang E.-J., Chae W.-J., Han D.-J., Morio T., Yang J.-J., Bothwell A., Lee S.-K.: Immunosuppressive effects of tautomycetinin vivo andin vitro via T cell-specific apoptosis induction.Proc.Nat.Acad.Sci.USA 99, 10617–10620 (2002).PubMedCrossRefGoogle Scholar
  38. Suzuki K., Nagao K., Monnai Y., Yagi A., Uyeda M.: Topostatin, a novel inhibitor of topoisomerase I and II produced byThermomonospora alba strain no. 1520.J.Antibiot. 51, 991–998 (1998).PubMedGoogle Scholar
  39. Suzuki K., Yamaizumi M., Tateishi S., Monnai Y., Yueda M.: Topostatin, a novel inhibitor of topoisomerase I and II produced byThermomonspora alba strain no. 1520.J.Antibiot. 51, 991–998 (1998).PubMedGoogle Scholar
  40. Suzuki K., Yamaizumi M., Tateishi S., Monnai Y., Uyeda M.: Topostatin, a novel inhibitor of topoisomerases I and II produced byThermomonspora alba strain no. 1520. III. Inhibitory properties.J.Antibiot. 52, 460–465 (1999).PubMedGoogle Scholar
  41. Uyeda M., Yokomizo K., Miyanoto Y., Habid E.-S.E.: Fattiviracin A1, a novel antiherpetic agent produced byStreptomyces microflavus strain no. 2445. II. Biological properties.J.Amtibiot 41, 1035–1039 (1998).Google Scholar
  42. Vester B., Douthwaite S.: Macrolide resistance conferred by base substitution in 23S rRNA.Antimicrob.Agents Chemother. 45, 1–12 (2001).PubMedCrossRefGoogle Scholar
  43. Wijnholds J., Mol C.A.A.M., Van Demeter L., Dehaas M., Scheffer G.L., Baas F., Beijnen J.H., Scheper R.J., Hatse S., De Clercq E., Balzarini J., Borst P.: Multidrug-resistance protein 5 is a multispecific anion transporter able to transport nucleotide analogs.Proc.Nat.Acad.Sci.USA 97, 74–76 (2000).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia

Personalised recommendations