Skip to main content
Log in

Mode of action of microbial bioactive metabolites

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Pathogenic microorganisms can be suppressed by cell wall destruction. Biosynthesis of peptidoglycans forming bacterial cell wall is interrupted by glycopeptides which inhibit polymerization of a disaccharide formed byN-acetylglucosamine andN-acetylmuramic acid, β-lactams and their derivatives inhibit peptidoglycan cross-linking. Antibiotics inhibiting protein synthesis bind to different sites on the rRNA and interfere with the formation of the polypeptide chain. Tumor cells resistant to chemotherapeutic drugs overproduce proteins transporting the drugs out of cells; these proteins eliminate substances which inhibit transcription of transport proteins. Some antitumor drugs (anthracyclines, fluoroquinolones, acridinesetc.) act at topoisomerases which irreversibly bind to DNA and inhibit DNA synthesis. Immunosuppressants affect various components of the immune system such as T-helper, T-effector cell function, antigen presentation and B-cell function. Antiparasitics — avermectins — bind to a receptor of this Gab-gated chlorine channel in the nerve fiber of nematodes and anthropodes, increasing the permeability of the membrane for chloride ions; the increased transport of chloride ions into the cell causes the death of the parasite. Ionophores dissolve in phospholipid bilayers and enormously increase their ionic permeability. Respiration inhibitors block the transport of electrons at several places of the respiratory chain. Rifamycin binds to the β subunit of bacterial RNA polymerase, thereby blocking mRNA synthesis. Antiviral compounds inhibit the transcription of DNA by several mechanisms or by inhibition of viral entry into host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dap:

meso-2,6-diaminopimelic acid

Gab:

4-aminobutyric acid (Abu)

GleNAc:

N-acetylglucosamine

MDR:

multidrug resistance

MRP(1):

MDR protein (1)

MurNAc:

N-acetylmuramic acid

References

  • Aeschimann J.R., Dresswr L.D., Kaatz G.W., Rybak M.J.: Effects of NorA inhibitors onin vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains ofStaphylococcus aureus.Antimicrob.Agents Chemother. 43, 335–340 (1999).

    Google Scholar 

  • Belova L., Tenson T., Xiong L., Mcnichols P.M., Mankin A.S.: A novel site of antibiotic action in the ribosome interaction of evernimicin with the large ribosomal subunit.Proc.Nat.Acad.Sci.USA 98, 3726–3731 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bookchin R.M., Etzion Z., Sorette M., Mohandas N., Skepper J.N., Lew V.L.: Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells.Proc.Nat.Acad.Sci.USA 97, 8045–8050 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Brown M.J.: Mechanism and specificity of action of ribovirin.Antimicrob.Agents Chemother. 15, 747–753 (1979).

    Google Scholar 

  • Burg R.W., Miller B.M., Baker E.E., Birnbaum J., Currier S.A., Hartman R., Yu-Ling K., Monaglan R.L., Olson G., Putter I., Tunac J.B., Wellick H., Stampley E.O., Oiwa R., Omura S.: Avermectins, new family of potent anthelmintie agents: production organism and fermentation.Antimicrob.Agents Chemother. 15, 361–367 (1979).

    PubMed  CAS  Google Scholar 

  • Chiao J.S., Yia T.H., Mei B.G., Jin Z.K., Gu W.L.: Rifamycin SV and related ansamycins. pp. 477–478 in L.C. Vining, C. Stuttard (Eds):Genetics and Biochemistry of Antibiotic Production. Butterword-Heinemann, Boston 1995.

    Google Scholar 

  • Chopra I., Roberts M.: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance.Microbiol.Mol.Biol.Rev. 65, 232–260 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Čikošová M., Blazsek M., Kubiš M., Gajdošíková J., Borošová G.: Biotechnological preparation of the elaiophylin.Folia Microbiol. 49, 731–736 (2004).

    Article  Google Scholar 

  • Dey S., Ramachandra M., Pastan I., Gattesman M.M., Ambudkar S.V.: Evidence for two nonidentical drug-interaction sites in the humanP-glycoprotein.Proc.Nat.Acad.Sci.USA 94, 10594–10599 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich J., Cofey G.L., Fischer M.W., Hillegas A.B., Kohbeger D.I., Machamer H.E., Rightsel H.E., Roegner F.R.: 6-Diazo-5-oxo-l-norleucine, a new tumor inhibitory substance.Antibiot.Chemother. 6, 487–496 (1956).

    CAS  Google Scholar 

  • Farutani M., Iida T., Yamano S., Kamino K., Maruyama T.: Biochemical and genetic characterization of an FK506-sensitive peptidyl-prolylcis—trans isomerase from a thermophilic archeon.Methanococcus thermolithotropicus. J.Bacteriol. 180, 388–394 (1998).

    Google Scholar 

  • Feng Z., Barletta R.G.: Roles ofMycobacterium smegmatis d-alanine:d-alanine ligase andd-alanine racemase in mechanisms of action of and resistance to the peptidoglycan inhibitord-cycloserin.Antimicrob.Agents Chemother. 47, 283–291 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Fukuzava M., Shearer G.M.: Effect of cyclosporin A on T cell immunity. I. Dose-dependent suppression of different murine T-helper cell pathways.Eur.J.Immunol. 19, 49–56 (1989).

    Article  Google Scholar 

  • Ganoza M.C., Kiel M.C.: A ribosomal ATPase is a target for hygromycin B inhibition onEschericia coli ribosomes.Antimicrob. Agents Chemother. 45, 2813–2819 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hancock R.E.W., Chaple D.S.: Peptide antibiotics.Antimicrob.Agents Chemother. 43, 1317–1323 (1999).

    PubMed  CAS  Google Scholar 

  • Heep M., Beck D., Bayerdoerffer E., Lehn N.: Rifamin and rifabutin resistance mechanism inHelicobacter pylori.Autimicrob. Agens Chemother. 43, 1497–1499 (1999).

    CAS  Google Scholar 

  • Hengstler J.G., Heimerdinger C.K., Schiffer I.B., Gebhard S., Segemüller J., Tanner B., Bolt H.M., Oesch F.: Dietary topoisomerase II-posisons: contribution of soy products to infant leukemia?EXLIJ. 1, 8–14 (2002).

    Google Scholar 

  • Hillard J.J., Goldschmidt R.M., Licata L., Baum E.Z., Bush K.: Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems.Antimicrob.Agents Chemother. 43, 1693–1699 (1999).

    Google Scholar 

  • Hopps H.E., Wissemann C.L. Jr., Smadel J.E., Ho R.: Mode of action of chloramphenicol — IV.J.Bacteriol. 218, 561–567 (1956).

    Google Scholar 

  • Jin S., Gorfajn G., Faircloth G., Scotto W.: Ecteinascidin 743, a transcription-target chemotherapeutic that inhibits MDR1 activation.Proc.Nat.Acad.Sci.USA 97, 6775–6779 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kagawa S.-Z., Yamashita Y., Ochiai K., Ando K., Iwasaki T., Tokiguschi T., Nakano H.: Terpentecin and UTC4B, new family of topoisomerase II targeting, antitumor antibiotic produced byStreptomyces: producing organism, fermentation and large scale purification.J.Antibiot. 48, 211–216 (1995).

    Google Scholar 

  • Khan S.I., Nimrod A.S., Mehropooya M., Nitiss J.L., Walker L.A., Clarl A.M.: Antifungal activity of eupolarine and its action on AND topoisomerases.Antimicrob.Agents Chemother. 46, 1785–1792 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kim H., Xia D., Yu C.-A., Xia J.-Z., Kachurin A.M., Zhang L., Yu L., Deisenhofer J.: Inhibitor binding changes domain mobility in the iron—sulfur protein of the mitochondrialbc 1 complex from bovine heart.Proc.Nat.Acad.Sci.USA 95, 8026–8033 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kotra L.P., Haddad J., Mobshery S.: Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance.Antimicrob.Agents Chemother. 44, 3249–3256 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lee, Sang-Yong, Hang-Sub Kim, Young-Ho Kim, Sang-Bae Han, Hwan-Mook Kim, Soon-Duck Hong, Jung-Joon Lee: Immunosuppressive activity of elaiophylins.J.Microbiol.Bioctechnol. 7, 272–277 (1997a).

    CAS  Google Scholar 

  • Lee, Sang-Yong, Sang-Chul Ha, Young-Soo Hong, Soon-Duck Hong, Jung-Joon Lee: Production of elaiophylin by the strain MCY-846 in a submerged culture.J.Microbiol.Biotechnol. 7, 278–281 (1997b).

    CAS  Google Scholar 

  • MacNeil D.J.: Avermectins, pp. 421–442 in L.C. Vining, C. Stuttard (Eds):Genetics and Biochemistry of Antibiotic Production. Butterword—Heinemann, Boston 1995.

    Google Scholar 

  • Murray P.R., Pfaller M.A., Rosenthal K.S.:Medical Microbiology, 5th. ed. ASM Press, Washington (DC) 2005.

    Google Scholar 

  • Nagata K., Sone N., Tamura T.: Inhibitory activities of lansoprazole against respiration inHelicobacter pylori.Antimicrob.Agents Chemother. 45, 1522–1527 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Noller H.F.: Ribosomal RNA and translation.Ann.Rev.Biochem. 60, 191–227 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Ogawa H., Yamashida Y., Katahira R., Chiba S., Iwasaki T., Shizawa T., Nakano H.: UCG9, a new antitumor antibiotic produced byStreptomyces. I. Producing organism, fermentation, isolation and biological activities.J.Antibiot. 51, 261–266 (1998).

    PubMed  CAS  Google Scholar 

  • Omura S., Sasaki Y., Iwai Y., Takeshima H.: Staurosporin, a potentially important gift from microorganisms.J.Antibiot. 48, 535–545 (1995).

    PubMed  CAS  Google Scholar 

  • Piddock L.V., Jin Y.F., Griggs J.: Effect of hydrophobicity and molecular mass on the accumulation of fluoroquinolones byStaphylococcus aureus.J.Antimicrob.Chemother. 47, 261–270 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rohrer S., Berger-Baechi B.: FemABX peptidyl transferase: a link between branched-chain cell wall peptide formation and β-lactam resistance in Gram-positive cocci.Antimicrob.Agents Chemother. 47, 837–846 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Russell R.G., Graveley R., Coxon F., Skjdt H., Del Pozo E., Elford P., Mackenzie A.: Cyclosporine A. Mode of action and effects on bone and joint tissues.Scand.J.Rheumatol. 95 (Suppl.), 9–18 (1992).

    Article  CAS  Google Scholar 

  • Sato N., Yusa K., Naito M., Tsuruo T.: Staurosporine, a potent inhibitor of C-kinase, enhances drug accumulation in multidrugresistant cells.Biochem.Biophys.Res.Commun. 173, 1252–1257 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Shim J.-H., Lee H.-K., Chang E.-J., Chae W.-J., Han D.-J., Morio T., Yang J.-J., Bothwell A., Lee S.-K.: Immunosuppressive effects of tautomycetinin vivo andin vitro via T cell-specific apoptosis induction.Proc.Nat.Acad.Sci.USA 99, 10617–10620 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K., Nagao K., Monnai Y., Yagi A., Uyeda M.: Topostatin, a novel inhibitor of topoisomerase I and II produced byThermomonospora alba strain no. 1520.J.Antibiot. 51, 991–998 (1998).

    PubMed  CAS  Google Scholar 

  • Suzuki K., Yamaizumi M., Tateishi S., Monnai Y., Yueda M.: Topostatin, a novel inhibitor of topoisomerase I and II produced byThermomonspora alba strain no. 1520.J.Antibiot. 51, 991–998 (1998).

    PubMed  CAS  Google Scholar 

  • Suzuki K., Yamaizumi M., Tateishi S., Monnai Y., Uyeda M.: Topostatin, a novel inhibitor of topoisomerases I and II produced byThermomonspora alba strain no. 1520. III. Inhibitory properties.J.Antibiot. 52, 460–465 (1999).

    PubMed  CAS  Google Scholar 

  • Uyeda M., Yokomizo K., Miyanoto Y., Habid E.-S.E.: Fattiviracin A1, a novel antiherpetic agent produced byStreptomyces microflavus strain no. 2445. II. Biological properties.J.Amtibiot 41, 1035–1039 (1998).

    Google Scholar 

  • Vester B., Douthwaite S.: Macrolide resistance conferred by base substitution in 23S rRNA.Antimicrob.Agents Chemother. 45, 1–12 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wijnholds J., Mol C.A.A.M., Van Demeter L., Dehaas M., Scheffer G.L., Baas F., Beijnen J.H., Scheper R.J., Hatse S., De Clercq E., Balzarini J., Borst P.: Multidrug-resistance protein 5 is a multispecific anion transporter able to transport nucleotide analogs.Proc.Nat.Acad.Sci.USA 97, 74–76 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Běhal.

Additional information

This work was supported by theGrant Agency of the Academy of Sciences of the Czech Republic (grant no. S 502 0002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Běhal, V. Mode of action of microbial bioactive metabolites. Folia Microbiol 51, 359–369 (2006). https://doi.org/10.1007/BF02931577

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931577

Keywords

Navigation