Folia Microbiologica

, 49:563 | Cite as

Response of saprotrophic microfungi degrading the fulvic fraction of soil organic matter to different N fertilization intensities, different plant species cover and elevated atmospheric CO2 concentration

  • V. Strnadová
  • H. Hršelová
  • M. Kolařík
  • M. Gryndler


The response of the cenosis composition of soil saprotrophic microfungi able to utilize the fulvic fraction of soil organic matter to increased concentration of atmospheric carbon dioxide, plant species cover quality and different levels of nitrogen fertilization was determined under field conditions in a free-air carbon dioxide enrichment experiment. Twenty-nine species of microfungi were isolated from the tested soil. The effects of CO2 enrichment and plant species cover were not significant. Nitrogen fertilization was identified as the only significant factor inducing changes in the abundance of soil microorganisms. This was reflected in a relatively low value of quantitative Sørensen similarity index on comparing fertilized and unfertilized treatments and in 2-way ANOVA of total CFU counts. Some differences were observed in species diversity between the two variants of all treatments. No association between microfungi and the factors under study was found by using the Monte Carlo Permutation test in redundancy analysis.


Soil Organic Matter Humic Substance Fulvic Acid Nitrogen Fertilization Monte Carlo Permutation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



free-air carbon dioxide enrichment


random amplification of polymorphic DNA


redundancy analysis


  1. von Arx J.A.: The Genera of Fungi Sporulating in Pure Culture. J. Cramer, Vaduz 1981.Google Scholar
  2. Bisset J.: A revision of the genusTrichoderma. I. SectionLongibrachiatum sect.nov.Can.J.Bot. 62, 924–931 (1984).Google Scholar
  3. Bisset J.: A revision of the genusTrichoderma. II. Infrageneric classification.Can.J.Bot. 69, 2357–2372 (1991a).CrossRefGoogle Scholar
  4. Bisset J.: A revision of the genusTrichoderma. III. SectionPachybasium.Can.J.Bot. 69, 2373–2417 (1991b).CrossRefGoogle Scholar
  5. Bisset J.: A revision of the genusTrichoderma. IV. Additional notes on sectionLongibrachiatum.Can.J.Bot. 69, 2418–2420 (1991c).CrossRefGoogle Scholar
  6. Chen Y., Senesi N., Schnitzer M.: Information provided on humic substances by E4/E6 ratios.Soil.Sci.Soc.Am.J. 41, 352–358 (1977).Google Scholar
  7. Conway D.R., Frankland J.C., Saunders V.A., Wilson D.R.: Effects of elevated atmospheric CO2 on fungal competition and decomposition ofFraxinus excelstor litter in laboratory microcosms.Mycol.Res. 104, 187–197 (2000).CrossRefGoogle Scholar
  8. Domsch K.H., Gams W., Anderson T.H.:Compendium of Soil Fungi, Vol. 1 and2. Academic Press, London 1980.Google Scholar
  9. Ellis M.B.:Dematiaceous Hyphomycetes. Commonwealth Agricultural Bureaux, Kew (UK) 1971.Google Scholar
  10. Ellis M.B.:More Dematiaceous Hyphomycetes. Commonwealth Agricultural Bureaux, Kew (UK) 1976.Google Scholar
  11. Fakoussa R.M., Hofrichter M.: Microbiology and biotechnology of coal degradation.Appl.Microbiol.Biotechnol. 52, 25–40 (1999).PubMedCrossRefGoogle Scholar
  12. Frederiksen H.B., Ronn R., Christensen S.: Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw.Glob.Biogeochem.Cycles 7, 313–321 (2001).Google Scholar
  13. Gams W., Bissett J.: Morphology and identification ofTrichoderma, pp. 3–34 in C.P. Kubicek, G. Harman (Eds):Trichoderma & Ghocladium, Vol. 1. Basic Biology, Taxonomy and Genetics. Academic Press, London-Bristol 1998.Google Scholar
  14. Gramss G., Ziegenhagen D., Sorge S.: Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes.Microb.Ecol. 37, 140–151 (1999).PubMedCrossRefGoogle Scholar
  15. Gryndler M., Hršelova H., Klír J., Kubat J., Votruba J.: Long-term fertilization affects the abundance of saprotrophic microfungi degrading resistant forms of soil organic matter.Folia Microbiol. 48, 76–82 (2003).CrossRefGoogle Scholar
  16. Hedges J.I., Eglinton G., Hatcher P.G., Kirchman D.L., Arnosi C., Derenne S., Evershed R.I., Kógel-Knaber I., de Leeuw J.W., Littke R., Michaelis W., Rullkötter J.: The molecularly uncharacterized component of nonliving organic matter in natural environments.Org.Geochem. 31, 945–958 (2000).CrossRefGoogle Scholar
  17. Hirschel G., Körner C., Arnon J.A.: Will rising atmospheric CO2 affect leaf litter quality andin situ decomposition rates in native plant communities?Oecologia 110, 387–397 (1997).CrossRefGoogle Scholar
  18. Hršelová H., Chvátalová I., Vosátka M., Klir J., Gryndler M.: Correlation of abundance of arbuscular mycorrhizal fungi, bacteria and saprotrophic microfungi with soil carbon, nitrogen and phosphorus.Folia Microbiol. 44, 683–687 (1999).CrossRefGoogle Scholar
  19. Hu S., Chapin F.S., Firestone M.K., Field C.B., Chiariello N.R.: Nitrogen limitation of microbial decomposition in a grassland under elevated CO2.Nature 409, 188–191 (2001).PubMedCrossRefGoogle Scholar
  20. Hungate B.A., Jaeger C.H. III,Gamara G., Chapin F.S. III,Field C.B.: Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2.Oecologia 124, 589–598 (2000).CrossRefGoogle Scholar
  21. van Kessel C., Horwath W.R., Hartwig U., Harris D., Lüscher A.: Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years.Glob.Biogeochem.Cycles 6, 435–444 (2000).Google Scholar
  22. Marilley L., Hartwig U.A., Aragno M.: Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneathLolium perenne andTrifolium repens under field conditions.Microb.Ecol. 38, 39–49 (1999).PubMedCrossRefGoogle Scholar
  23. Mueller-Dombois D., Ellenberg H.:Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York 1974.Google Scholar
  24. Olsen S.R., Dean L.A.: Phosphorus, pp. 1035–1049 in C.A. Black (Ed.):Methods of Soil Analysis, Agronomy Ser. no. 9, Part 2. American Society of Agronomy, Madison 1965.Google Scholar
  25. Pažoutová S., Bandyopadhyay R., Frederickson D.E., Mantle P.G.: Relations among sorghum ergot isolates from the Americas, Africa, India, and Australia.Plant Dis. 84, 437–442 (2000a).CrossRefGoogle Scholar
  26. Pažoutová S., Olšovská J., Linka M., Kolínská R., Flieger M.: Chemoraces and habitat specialization ofClaviceps purpurea populations.Appl.Environ.Microbiol. 66, 5419–5425 (2000b).PubMedCrossRefGoogle Scholar
  27. Peech M.: Hydrogen-ion activity, pp. 914–926 in C.A. Black (Ed):Methods of Soil Analysis, Agronomy Ser. no. 9, Part 2. American Society of Agronomy, Madison 1965.Google Scholar
  28. van de Peer Y., De Wachter R.: Treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment.Computer Appl.Biosci. 10, 569–570 (1994).Google Scholar
  29. Pitt J.I.: The genusPenicillium and its teleomorphic statesEupenicillium andTalaromyces. Academic Press, London 1979.Google Scholar
  30. Raich J.W., Potter C.S.: Global patterns of carbon dioxide emissions from soils.Glob.Biogeochem.Cycles 9, 23–36 (1995).CrossRefGoogle Scholar
  31. Samson R.A.:Paecilomyces and some allied hyphomycetes.Stud.Mycol. 6, 1–119 (1974).Google Scholar
  32. Schlesinger W.H.:An Analysis of Global Change. Biogeochemistry. Academic Press, San Diego 1991.Google Scholar
  33. Schnitzer M.: Humic substances: chemistry and reactions, pp. 1–58 in M. Schnitzer, S.V. Khan (Eds):Soil Organic Matter. Elsevier Science, New York 1978.CrossRefGoogle Scholar
  34. Sims J.R., Haby V.A.: Simplified colorimetric determination of soil organic matter.Soil Sci. 112, 137–141 (1971).CrossRefGoogle Scholar
  35. Sowerby A., Blum H., Gray T.R.G., Ball A.S.: The decomposition ofLolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass.Soil Biol.Biochem. 32, 1359–1366 (2000).CrossRefGoogle Scholar
  36. Vitousek P.M.: Beyond global warming: ecology and global change.Ecology 75, 1861–1876 (1994).CrossRefGoogle Scholar
  37. Yanagi Y., Tamaki H., Otsuka H., Fujitake N.: Comparison of decolorization by microorganisms of humic acids with different12C NMR properties.Soil Biol.Biochem. 34, 729–731 (2002).CrossRefGoogle Scholar
  38. Zak D.R., Pregitzer K.S., Curtis P.S., Holmes W.E.: Atmospheric CO2 and the composition and function of soil microbial communities.Ecol.Appl. 10, 47–59 (2000).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  • V. Strnadová
    • 1
    • 2
  • H. Hršelová
    • 1
  • M. Kolařík
    • 1
    • 2
  • M. Gryndler
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia
  2. 2.Department of Botany, Faculty of ScienceCharles UniversityPragueCzechia

Personalised recommendations