Folia Microbiologica

, Volume 49, Issue 5, pp 513–518 | Cite as

Rapid detection of sulfide-producing bacteria from sulfate and thiosulfate



An original liquid medium and a field broth bottle method for the rapid detection of the most probable number of sulfide-producing bacteria (SPB) from sulfate and thiosulfate are described. The broth bottle method enables after inoculation with a sample (water, sediment) the growth of ubiquitous aerobic bacteria, causing oxygen depletion, required for the growth of the present various anaerobic and facultative anaerobic SPB. The medium regularly gives higher numbers of the SPB than the used control medium (Postgate’s E) for detection of sulfate-reducing bacteria and the final results are obtained just 36 h after the medium inoculation. The method is simple and suitable for the estimation of the physiological group of SPB in fresh waters, saline waters, sediments and industrial waters.


Thiosulfate Mild Steel Sulfide Production Estuary Mouth Physiological Group 



most probable numbers


sulfate-reducing bacteria


sulfide-producing bacteria


thiosulfate-reducing bacteria


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA:Standard Methods for the Examination of Water and Wastewater, 19th ed. APHA-AWWA-WPCF, New York 1995.Google Scholar
  2. Atlas R.M., Bartha R.:Microbial Ecology: Fundamentals and Applications, pp. 218–306. Addison-Wesley, Boston 1997.Google Scholar
  3. Battersby N.S.: Sulfate-reducing bacteria, pp. 269–299 in B. Austin (Ed.):Methods in Aquatic Bacteriology. John Wiley & Sons, New York 1988.Google Scholar
  4. Crollet J.L., Magot M., Brazy J.L.: Test-kit for thiosulfate-reducing bacteria.The NACE Ann. Conf. and Corrosion Show, paper no. 97211 (1997).Google Scholar
  5. Eisgruber H., Reuter G.: A selective medium for the detection and enumeration of mesophilic sulphite-reducing clostridia in food monitoring programs.Food Res.Int. 28, 219–226 (1995).CrossRefGoogle Scholar
  6. Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T.:Bergey is Manual of Determinative Bacteriology, p. 787. Williams & Wilkins, Baltimore 1994.Google Scholar
  7. Jain D.K.: Evaluation of the semisolid Postgate’s B medium for enumerating sulfate-reducing bacteria.J.Microbiol.Meth. 22, 27–38 (1995).CrossRefGoogle Scholar
  8. Jorgensen B.B., Bak F.: Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat. Denmark).Appl.Environ.Microbiol. 57, 847–856 (1991).PubMedGoogle Scholar
  9. Obuekwe C.O., Westlake W.S., Cook F.D., Costerton J.W.: Surface changes in mild steel coupons from the action of corrosion causing bacteria.Appl.Environ.Microbiol. 41, 766–774 (1981).PubMedGoogle Scholar
  10. Ritter R.: Oekologische und Physiologische Bakterien Gruppen: Ergebnisse Hydrobakteriologischer Untersuchungen, pp. 113–137 in I. Daubner (Ed.):II. Internationales Hydromikrobiologisches Symp., Smolenice (Slovakia) 1975.Google Scholar
  11. StatSoft, Inc.: Statistica (data analysis software system) version 6 (2001).Google Scholar
  12. Tatnall R.E., Stanton K.M., Ebersole R.C.: Testing for the presence of sulfate-reducing bacteria.Corrosion 88, 71–80 (1988).Google Scholar
  13. Vester F., Ingvorsen K.: Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer.Appl.Environ.Microbiol. 64, 1700–1707 (1998).PubMedGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations