Folia Microbiologica

, Volume 51, Issue 1, pp 50–56 | Cite as

Stimulation of pigment accumulation inAnabaena azollae strains: Effect of light intensity and sugars

  • V. Venugopal
  • R. Prasanna
  • A. Sood
  • P. Jaiswal
  • B. D. Kaushik


The influence of high light intensity on the growth and pigment accumulating ability ofAnabaena azollae was investigated.A. azollae responded positively to high light intensity (6 klx) and was further evaluated at higher intensities (10 and 15 klx), in the presence of glucose, sucrose and jaggery ± DCMU. Significant enhancement in phycobiliproteins and carotenoids was observed in the sugar supplemented cultures at high light intensities. SDS-PAGE profiles of whole cell proteins revealed the presence of unique bands in such treatments. Sucrose supplementation induced a 30–90% increase in carotenoids, phycocyanin and phycoerythrin content at 10 klx. Molecular analysis of the stimulatory and interactive role of sugars on pigment enhancement at high light intensity may aid in better exploitation of cyanobacteria as a source of pigments.


Carotenoid High Light Intensity DCMU Indian Agricultural Research Institute Pigment Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



acetylene-reducing activity










dark + glucose


dark + glucose + DCMU


dry mass


Duncan’s multiple range test




light + glucose


light + glucose + DCMU


high light intensity


light + jaggery


light + jaggery + DCMU


low light intensity


light + sucrose


light + sucrose + DCMU








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikary S.P., Pattnaik H.: Growth response ofWestiellopsis prolificaJanet to organic substrates in light and dark.Hydrobiologia67, 241–248 (1979).CrossRefGoogle Scholar
  2. Apte S.K., Fernandes T., Badran H., Ballal A.: Expression and possible role of stress-responsive proteins inAnabaena.J.Biosci.23, 399–406 (1998).CrossRefGoogle Scholar
  3. Ascencio F., Gama N.L., De Philippis R., Ho B.: Effectiveness ofCyanothece spp. andCyanospira capsulata exocellular polysaccharides as antiadhesive agents for blocking attachment ofHelicobacter pylori to human gastric cells.Folia Microbiol.49, 64–70 (2004).CrossRefGoogle Scholar
  4. Bogorad L.: Phycobiliproteins and complementary chromatic adaptation.Ann.Rev.Plant Physiol.26, 369–401 (1975).CrossRefGoogle Scholar
  5. Borowitzka M.A.: Vitamins and fine chemicals from microalgae, pp. 153–196 in M.A. Borowitzka, L.J. Borowitzka (Eds):Microalgal Biotechnology. Cambridge University Press, Cambridge (UK) 1988.Google Scholar
  6. Dembitsky V.M., Řezanka T.: Metabolites produced by nitrogen-fixingNostoc species.Folia Microbiol.50, 363–392 (2005).CrossRefGoogle Scholar
  7. Falkowski P.G., Owens T.G.: Light shade adaptation — two strategies in marine phytoplankton.Plant Physiol.66, 592–595 (1980).PubMedGoogle Scholar
  8. Fontes A.G., Vargas M.A., Moreno J., Guerrero M.G., Losada M.: Changes in the pigment content ofAnabaena variabilis cells in outdoor culture.J.Plant Physiol.137, 441–445 (1991).Google Scholar
  9. Garnier F., Dubacq J.P., Thomas J.C.: Evidence for transient association of new proteins with theSpirulina maxima phycobilisome in relation to light intensity.Plant Physiol.106, 747–754 (1994).PubMedGoogle Scholar
  10. Glazer A.N.: Phycobilisomes: assembly and attachment, pp. 69–74 in P. Fay, C. Van Baalen (Eds):The Cyanobacteria. Elsevier, Amsterdam 1987.Google Scholar
  11. Grossman A.R.: A molecular understanding of complementary chromatic adaptation.Photosynth.Res.76, 207–215 (2003).PubMedCrossRefGoogle Scholar
  12. He Q., Dolganov N., Bjorkman O., Grossman A.R.: The HLIP polypeptides inSynechocystis PCC 6803: expression and function in high light.J.Biol.Chem.276, 306–314 (2000).CrossRefGoogle Scholar
  13. Hrouzek P., Lukešová A., Šimek M.: Comparison of light and dark nitrogenase activity in selected soil cyanobacteria.Folia Microbiol.49, 435–440 (2004).CrossRefGoogle Scholar
  14. Jensen A.: Chlorophylls and carotenoids, pp. 59–70 in J.A. Hellebust, J.S. Craige (Eds):Phycological Methods. Physiological and Biochemical Methods. Cambridge University Press, Cambridge (UK) 1978.Google Scholar
  15. Hihara Y., Kamei A., Kanehisa M., Kaplan A., Ikeuchi M.: DNA microarray analysis of cyanobacterial gene expression during acclimation to high light.Plant Cell13, 793–806 (2001).PubMedCrossRefGoogle Scholar
  16. Katoh H., Asthana R.K., Ohmori M.: Gene expression in the cyanobacteriumAnabaena sp. PCC7120 under desiccation.Microb.Ecol.47, 164–174 (2004).PubMedCrossRefGoogle Scholar
  17. Kiyohara T., Fujita Y., Hattori A., Watanabe A.: Heterotrophic culture of a blue-green alga,Tolypothrix tenuis.J.Gen.Microbiol.6, 172–182 (1960).CrossRefGoogle Scholar
  18. Laemmli U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature227, 680–685 (1970).PubMedCrossRefGoogle Scholar
  19. Lorimier R.M., Smith R.L., Stevens S.E.: Regulation of phycobilisome structure and gene expression by light intensity.Plant Physiol.98, 1003–1010 (1992).PubMedCrossRefGoogle Scholar
  20. Morena J., Rodriguez H., Vargas V.A., Rivas J., Guerrero M.G.: Nitrogen fixing cyanobacteria as source of phycobilin proteins pigments — composition and growth performance of ten filamentous heterocystous strains.J.Appl.Phycol.7, 17–23 (1995).CrossRefGoogle Scholar
  21. Pabby A., Prasanna R., Nayak S., Singh P.K.: Physiological characterization of the cultured and freshly isolated endosymbionts from different species ofAzolla.Plant Physiol.Biochem.41, 73–79 (2003).CrossRefGoogle Scholar
  22. Pabby A., Prasanna R., Singh P.K.: Morphological characterization of cultured and freshly separated cyanobionts (Nostocales, Cyanophyta) formAzolla species.Acta Bot.Hung.46, 211–223 (2004).CrossRefGoogle Scholar
  23. Prasanna R., Pabby A., Singh P.K.: Effect of glucose and light/dark environment on pigmentation profiles inCalothrix elenkenii.Folia Microbiol.49, 26–30 (2004).CrossRefGoogle Scholar
  24. Raps S., Wyman K., Siegelman H.W., Falkowski P.G.: Adaptation of the cyanobacteriumMicrocystis aeruginosa to light intensity.Plant Physiol.72, 829–832 (1983).PubMedGoogle Scholar
  25. Richmond A.:Handbook of Microalgal Mass Culture. CRC Press, Boca Raton (USA) 1986.Google Scholar
  26. Rodriguez H., Rivas J., Guerrero G.M., Losada M.: Enhancement of phycobiliprotein production in nitrogen fixing cyanobacteria.J.Biotechnol.20, 263–270 (1991).CrossRefGoogle Scholar
  27. Rosen A., Arad H., Schonfeld M., Tel-or E.: Fructose supports glycogen accumulation, heterocyst differentiation, N2 fixation and growth of the isolated cyanobiontAnabaena azollae.Arch.Microbiol.145, 187–190 (1986).CrossRefGoogle Scholar
  28. Stanier R.Y.: Autotrophy and heterotrophy in unicellular blue green algae, pp. 501–518 in N.G. Carr, B.A. Whitton (Eds):Biology of the Blue-Green Algae. Blackwell Scientific, Oxford (UK) 1973.Google Scholar
  29. Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G.: Purification and properties of unicellular blue-green algae (order:Chroococcales).Bacteriol.Rev.35, 171–205 (1971).PubMedGoogle Scholar
  30. Thomas C., Anderson C.R., Gamales S., Golden S.S.: PsfR, a factor that stimulatespsbAI expression in the cyanobacteriumSynechococcus elongatus PCC 7942.Microbiology150, 1031–1040 (2004).PubMedCrossRefGoogle Scholar
  31. Wolk C.P.: Genetic analysis of cyanobacterial development.Curr.Opin.Gen.Dev.1, 336–341 (1991).CrossRefGoogle Scholar
  32. Wyman M., Gregory R.P.F., Carr N.G.: Novel role of phycoerythrin in a marine cyanobacteriumSynechococcus strain DC2.Science230, 818–820 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • V. Venugopal
    • 1
  • R. Prasanna
    • 1
  • A. Sood
    • 1
  • P. Jaiswal
    • 1
  • B. D. Kaushik
    • 2
  1. 1.Center for Conservation and Utilization of Blue-Green AlgaeIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations