Folia Microbiologica

, 51:38 | Cite as

Effects ofN,N-bis(3-aminopropyl)dodecylamine on antioxidant enzyme activities, mitochondrial morphology and metabolism inAspergillus niger

  • E. Kuźniak
  • A. Wyrwicka
  • B. Gabara
  • A. Koziróg
  • M. Sklodowska


The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSP) as well as of succinate dehydrogenase (SDG), NADH dehydrogenase (NDG) and fumarate hydratase (FHT) were examined in relation to mitochondrial ultrastructure changes inAspergillus niger exposed toN,N-bis(3-aminopropyl)dodecylamine (Apd) that was shown to exhibit fungicidal activity. There was a progressive increase in SOD, CAT and GSP activities 1 and 4 h after 0.05 and 0.1 % Apd application. However, this was followed by a pronounced activity decrease when 0.05 % Apd treatment was prolonged by 1 d. The destructive effect on fungal morphology was observed when this fungicidal agent was applied at the concentration of 0.1 % for 1 d. In the treated hyphae mitochondria degenerated after all organelles. The morphological malformations of mitochondria had an impact on their metabolic state; however, the activities of SDG, NDG and FHT were affected to a different extent. InA. niger the fungicidal effect of Apd could be mediated by oxidative stress impairing the vital mitochondria-related cellular functions.


NADH Dehydrogenase Mitochondrial Morphology Dodecylamine Fumarate Hydratase Fungicidal Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





reactive oxygen species


catalase; hydrogen-peroxide:hydrogen-peroxide oxidoreductase (EC


glutathione peroxidase; glutathione:hydrogen-peroxide oxidoreductase (EC


fumarate hydratase; (S)-malate hydro-lyase (EC


NADH dehydrogenase; NADH:(acceptor) oxidoreductase (EC


succinate dehydrogenase; succinate:(acceptor) oxidoreductase (EC


superoxide dismutase, superoxidersuperoxide oxidoreductase (EC


CuZn-superoxide dismutase


  1. Bartoli C.G., Gómez F., Martínez D.E., Guiamet J.J.: Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.).J.Exp.Bot. 55, 1663–1669 (2004).PubMedCrossRefGoogle Scholar
  2. Bradford M.M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem. 72, 248–252 (1976).PubMedCrossRefGoogle Scholar
  3. Brocard J.B., Rintoul G.L., Reynolds I.J.: New perspectives on mitochondrial morphology in cell function.Biol.Cell 95, 239–242 (2003).PubMedCrossRefGoogle Scholar
  4. Davies K.J.A.: Oxidative stress: the paradox of aerobic life.Biochem.Soc.Symp. 61, 1–31 (1994).Google Scholar
  5. Dhindsa R.S.P., Plumb-Dhindsa T., Thorpe A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase.J.Exp.Bot. 32, 93–101 (1981).CrossRefGoogle Scholar
  6. Douce R., Christensen E.L., Bonner W.D. Jr.: Preparation of intact plant mitochondria.Biochim.Biophys.Acta 275, 148–160 (1972).PubMedCrossRefGoogle Scholar
  7. Forman H.J., Fukuto J.M., Torres M.: Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers.Am.J.Physiol.Cell Physiol. 287, 246–256 (2004).CrossRefGoogle Scholar
  8. Friedberg D., Peleg Y., Monsonego A., Maissi S., Battat E., Rokem J.S., Goldberg I.: ThefumR gene encoding fumarase in the filamentous fungiRhizopus oryzae: cloning, structure and expression.Gene 163, 139–144 (1995).PubMedCrossRefGoogle Scholar
  9. Gabara B., Kalwinek J., Koziróg A., Żakowska Z., Brycki B.: Influence ofN,N-bis(3-aminopropyl)dodecylamine on the ultrastructure of nuclei inAspergillus niger mycelium and on cell proliferation and mitotic disturbances inAllium cepa L. root meristem.Acta Biol.Cracov.Bot. 48 (2006).Google Scholar
  10. Godočíková J., Boháčová V., Zámocky M., Polek B.: Production of catalases byComamonas spp. and resistance to oxidative stress.Folia Microbiol. 50, 113–118 (2005).CrossRefGoogle Scholar
  11. Hamilton A.J., Holdom M.D., Jeavons L.: Expression of the Cu,Zn-superoxide dismutase ofAspergillus fumigatus as determined by immunochemistry and immunoelectron microscopy.FEMS Immunol.Med.Microbiol. 14, 95–102 (1996).PubMedCrossRefGoogle Scholar
  12. Hatch M.D.: A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts.Anal.Chem. 85, 271–275 (1978).Google Scholar
  13. Hopkins J., Tudhope G.R.: Glutathione peroxidase in human red cells in health and disease.Br.J.Haematol. 25, 563–575 (1973).PubMedCrossRefGoogle Scholar
  14. Jones A.: Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?Trends Plant Sci. 5, 225–230 (2000).PubMedCrossRefGoogle Scholar
  15. Kawasaki L., Wysong D., Diamond R., Aguirre J.: Two divergent catalase genes are differentially regulated duringAspergillus nidulans development and oxidative stress.J.Bacteriol. 179, 3284–3292 (1997).PubMedGoogle Scholar
  16. Kawasaki L., Aguirre J.: Multiple catalase genes are differentially regulated inAspergillus nidulans.J.Bacteriol. 183, 1434–1440 (2001).PubMedCrossRefGoogle Scholar
  17. Kayali H.A., Tarhan L.: Variations in metal uptake, antioxidant enzyme response and membrane lipid peroxidation level inFusarium equiseti andF. acuminatum.Proc.Biochem. 40, 1783–1790 (2005).CrossRefGoogle Scholar
  18. Kozirog A., Żakowska Z., Gabara B., Kalwinek J., Brycki B.: Conidial germination and mycelial growth ofAspergillus niger in the presence ofN,N-bis(3-aminopropyl)dodecylamine.Internat.Biodeter.Biodegrad., in press (2006).Google Scholar
  19. Krasowska A., Dziadkowiec D., Łukaszewicz M., Wojtowicz K., Sigler: K. Effect of antioxidants onSaccharomyces cerevisiae mutants deficient in superoxide dismutases.Folia Microbiol. 48, 754–760 (2003).CrossRefGoogle Scholar
  20. Kreiner M., Harvey L.M., McNeil B.: Oxidative stress response of a recombinantAspergillus niger to exogenous menadione and H2O2 addition.Enzyme Microb.Tech. 30, 346–353 (2002).CrossRefGoogle Scholar
  21. Kreiner M., Harvey L.M., McNeil B.: Morphological and enzymatic responses of a recombinantAspergillus niger to oxidative stressors in chemostat cultures.J.Biotech. 100, 251–260 (2003).CrossRefGoogle Scholar
  22. McCord J.M., Fridovich I.: Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein).J.Biol.Chem. 24, 6049–6050 (1969).Google Scholar
  23. Melo A.N.P., Duarte M., Møller I.M., Prokisch H., Dolan P.L., Pinto L., Nelson M.A., Videira A.: The external calcium-dependent NADPH dehydrogenase fromNeurospora crassa mitochondria.J.Biol.Chem. 276, 3947–3951 (2001).PubMedCrossRefGoogle Scholar
  24. Minami M., Yoshikawa H.: A simplified assay method of superoxide dismutase activity for clinical use.Clin.Chim.Acta 92, 337–342 (1979).PubMedCrossRefGoogle Scholar
  25. Møller I.M., Rasmusson A.G.: The role of NADP in the mitochondrial matrix.Trends Plant Sci. 3, 21–27 (1998).CrossRefGoogle Scholar
  26. Molnár Z., Mészáros E., Szilágyi Z., Rosén S., Emri T., Pócsi I.: Influence offadA G203R and ΔflbA mutations on morphology and physiology of submergedAspergillus nidulans cultures.Appl.Biochem.Biotech. 118, 349–360 (2004).CrossRefGoogle Scholar
  27. Reynolds E.S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy.J.Cell Biol. 17, 208–212 (1963).PubMedCrossRefGoogle Scholar
  28. Schloss J.V.: Oxygen toxicity from plants to people.Planta 216, 38–43 (2002).PubMedCrossRefGoogle Scholar
  29. Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms — I. Microbialvs. higher cells — damage and defenses in relation to cell aging and death.Folia Microbiol. 44, 587–624 (1999).CrossRefGoogle Scholar
  30. Tsekova K., Todorova D.: Copper(II) accumulation and superoxide dismutase activity during growth ofAspergillus niger B-77.Z.Naturforsch. 57c, 319–322 (2002).Google Scholar
  31. Turrens J.F.: Mitochondrial formation of reactive oxygen species.J.Physiol. 552, 335–344 (2003).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2006

Authors and Affiliations

  • E. Kuźniak
    • 1
  • A. Wyrwicka
    • 1
  • B. Gabara
    • 2
  • A. Koziróg
    • 3
  • M. Sklodowska
    • 1
  1. 1.Department of Plant Physiology and BiochemistryŁódźPoland
  2. 2.Department of Plant Cytology and Cytochemistry University of ŁódźŁódźPoland
  3. 3.Institute of Fermentation Technology and MicrobiologyTechnical UniversityŁódźPoland

Personalised recommendations