Folia Microbiologica

, Volume 50, Issue 4, pp 288–292 | Cite as

Molecular analysis of 16S–23S spacer regions ofAcetobacter species

  • M. Kretová
  • J. Grones


16S–23S rDNA internal transcribed spacer regions (ITS) similarities were determined in 8Acetobacter and 1Gluconacetobacter strains. ITS-PCR amplification of the 16S–23S spacers showed 2 products of similar size in 7 strains; only 1 product of similar size was found in the 2 remaining strains. Analysis of the PCR products using restriction endonucleasesHaeIII,HpaII andAluI revealed 3 different restriction groups ofA. pasteurianus forAluI andHaeIII, and 4 restriction groups forHpaII. ITS nucleotide sequences of all studied strains exhibited a 52–98% similarity.


Internal Transcribe Space Space Region Restriction Group Acetic Acid Bacterium Vinegar Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birnboim H.C., Doly J.: A rapid alkaline extraction procedure for screening recombinant plasmid DNA.Nucl.Acids Res.7, 1513–1523 (1979).PubMedCrossRefGoogle Scholar
  2. Bullock W.O., Fernandez J.M., Short J.M.: XL1-Blue: A high efficiency plasmid transformingrecA Escherichia coli strain with β-galactosidase selection.BioTechniques5, 376–378 (1987).Google Scholar
  3. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.: Re-examination of the genusAcetobacter, with descriptions ofAcetobacter cerevisiae sp.nov. andAcetobacter malorum sp.nov.Internat.J.Syst.Evol.Microbiol.52, 1551–1558 (2002).CrossRefGoogle Scholar
  4. De Ley J., Gillis M., Swings J.:Acetobacteraceae, pp. 267–278 inBergey’s Manual of Systematic Bacteriology, Vol. 1 (N.R. Krieg, J.G. Holt, Eds). Williams & Wilkins, Baltimore (USA) 1984.Google Scholar
  5. Gillis M., De Ley J.: Intra and intergenomic similarities of the RNA cistrons ofAcetobacter andGluconobacter.Internat.J.Syst.Bacteriol.30, 7–27 (1980).CrossRefGoogle Scholar
  6. Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams S.T.:Bergey’s Manual of Determinative Bacteriology, 9th ed. Williams & Wilkins, Baltimore (USA) 1994.Google Scholar
  7. Jansen M.A., Webster J.A., Straus N.: Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms.Appl.Environ.Microbiol.59, 945–952 (1993).Google Scholar
  8. Katsura K., Kawasaki H., Potacharoen W., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K.:Assaia siamentis sp.nov. an acetic acid bacteria in the α-proteobacteria.Internat.J.Syst.Evol.Microbiol.51, 559–563 (2001).Google Scholar
  9. Lisdiyanti P., Kawasaki H., Seki T., Yamada Y., Uchimura T., Komagara K.: Systematic study of the genusAcetobacter with description ofAcetobacter indonesiensis sp.nov.,Acetobacter tropicalis sp.nov.,Acetobacter orleanensis (Henneberg 1906) comb.nov.,Acetobacter lovaniensis (Frateur 1950) comb.nov., andAcetobacter estunenis (Carr 1985) comb.nov.J.Gen.Appl.Microbiol.46, 165–174 (2000).CrossRefGoogle Scholar
  10. Lisdiyanti P., Kawasaki H., Seki T., Yamada Y., Uchimura T., Komagata K.: Identification ofAcetobacter strains isolated from Indonesian sources, and proposals ofAcetobacter syzygii sp.nov.,Acetobacter cibinongensis sp.nov., andAcetobacter orientalis sp.nov.J.Gen.Appl.Microbiol.47, 119–131 (2001).PubMedCrossRefGoogle Scholar
  11. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K.:Kozakia baliensis gen. nov., sp.nov., a novel acetic bacterium in the α-proteobacteria.Internat.J.Syst.Evol.Microbiol.52, 813–818 (2002).CrossRefGoogle Scholar
  12. Mariette I., Schwarz E., Vogel R.F., Hammes W.P.: Characterization of plasmid profile analysis of acetic acid bacteria from wine, spirit and cider acetators for industrial vinegar production.J.Appl.Bacteriol.71, 134–138 (1991).Google Scholar
  13. Poblet M., Rozís N., Guillamón J.M., Mass A.: Identification of acetic acid bacteria by restriction fragment lenght polymorfism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA.Lett.Appl.Microbiol.31, 63–67 (2000).PubMedCrossRefGoogle Scholar
  14. Sambrook J., Fritsch E.F., Maniatis T.:Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1989.Google Scholar
  15. Sanger F., Nicklen S., Coulson A.R.: DNA sequencing with chain-terminating inhibitors.Proc.Nat.Acad.Sci.USA74, 5463–5467 (1977).PubMedCrossRefGoogle Scholar
  16. Sievers M., Ludwig W., Teuber M.: Phylogenetic positionning ofAcetobacter, Gluconobacter, Rhodopila andAcidiphilium species as a branch of acidophilic bacteria in the α-subclass of proteobacteria based on 16S ribosomal DNA sequences.Syst.Appl.Microbiol.17, 189–196 (1994).Google Scholar
  17. Sievers M., Alonso L., Gianotti S., Boesch C., Teuber M.: 16S–23S ribosomal RNA spacer regions ofAcetobacter europaeus andA. xylinum, tRNA genes and antitermination sequences.FEMS Microbiol.Lett.142, 43–48 (1996).PubMedCrossRefGoogle Scholar
  18. Swings J.: The generaAcetobacter andGluconobacter, pp. 2268–2286 inThe Procaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Vol. III (A. Balows, H. Trüper, G.M. Dworkin, W. Harder, K.H. Schleifer, Eds). Springer-Verlag, New York 1992.Google Scholar
  19. Takemura H., Horinouchi S., Beppu T.: Novel insertion sequenceIS1380 fromAcetobacter pasteurianus is involved in loss of ethanol-oxidizing ability.J.Bacteriol.173, 7070–7076 (1991).PubMedGoogle Scholar
  20. Trček J., Ramuš J., Raspor P.: Phenotypic characterization and RAPD-PCR profiling ofAcetobacter sp. isolated from spirit vinegar production.Food Technol.Biotechnol.35, 63–67 (1997).Google Scholar
  21. Trček J., Raspor P.: Molecular characterization of acetic acid bacteria isolated from spirit vinegar.Food Technol.Biotechnol.37, 113–116 (1999).Google Scholar
  22. Trček J., Teuber M.: Genetic and restriction analysis of the 16S–23S rDNA internal transcribed spacer regions of the acetic acid bacteria.FEMS Microbiol.Lett.208, 69–75 (2002).PubMedCrossRefGoogle Scholar
  23. Validation List no. 79. Validation of publication of new names and new combinations.International Committee on Systematic. Internat. J.Syst.Evol.Microbiol.51, 263–265 (2001).Google Scholar
  24. Yamada Y., Hashino K., Ishikawa Y.: The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenusGluconacetobacter to the genetic level.Biotechnol.Biochem.61, 1244–1251 (1997).CrossRefGoogle Scholar
  25. Yamada Y.: Transfer ofAcetobacter oboediens (Sokolek et al. 1998) andAcetobacter intermedius (Boesh et al. 1998) to the genusGluconoacetobacter asGluconoacetobacter oboediens comb.nov. andGluconoacetobacter intermedius comb.nov.Internat.J.Syst.Evol.Microbiol.50, 2225–2227 (2000).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  1. 1.Department of Molecular Biology, Faculty of ScienceComenius UniversityBratislavaSlovakia

Personalised recommendations