Skip to main content
Log in

Effects of temperature shift strategies on human preproinsulin production in the fed-batch fermentation of recombinantEscherichia coli

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Preproinsulin is a well-known precursor of human insulin for the regulation of blood glucose levels. In this study, fed-batch fermentations of recombinantEscherichia coli JM109/pPT-MRpi were carried out for the overexpression of human preproinsulin. The expression of human preproinsulin was controlled by the temperature inducibleP2 promoter. The time-course profiles of fed-batch fermentation and SDS-PAGE analysis showed that human insulin expression was triggered by a culture temperature change from 30 to 37°C. Fermentation shift strategies, including the multi-step increase of temperature and the modulation of initiation time, were optimized to obtain high titers of cell mass and preproinsulin. The optimized fed-batch fermentation, consisting of a three-step shift of culture temperature from 30 to 37°C for 2 h, gave the best results of 43.1 g/L of dry cell weight and 33.3% preproinsulin content, which corresponded to 2.0- and 1.2-fold increases, respectively, as compared to those of fed-batch culture at a constant temperature of 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barfoed, H. C. (1987) Insulin production technology.Chem. Eng. Prog. 83: 49–54.

    CAS  Google Scholar 

  2. Norman, A. and G. Litwack (1987)Hormones. 1st ed., pp. 122–123. Academic Press, New York, NY, USA.

    Google Scholar 

  3. Ladisch, M. R. and K. L. Kohlmann (1992) Recombinant human insulin.Biotechnol. Prog. 8: 469–478.

    Article  CAS  Google Scholar 

  4. Castellanos-Serra, L. R., E. Hardy, R. Ubieta, N. S. Vispo, C. Fernandez, V. Besada, V. Falcon, M. Gonzalez, A. Santos, G. Perez, A. Silva, and L. Herrera (1996) Expression and folding of an interleukin-2-proinsulin fusion protein and its conversion into insulin by a single step enzymatic removal of the C-peptide and the N-terminal fused sequence.FEBS Lett. 378: 171–176.

    Article  CAS  Google Scholar 

  5. Evans, D. B., W. G. Tarpley, and S. K. Sharma (1991) Expression and characterization of chimeric rDNA proteins engineered for purification and enzymatic cleavage.Protein Expr. Purif. 2: 205–213.

    Article  CAS  Google Scholar 

  6. Na, K. I., M. D. Kim, W. K. Min, J. A. Kim, W. J. Lee, D. O. Kim, K. M. Park, and J. H. Seo (2005) Expression and purification of ubiquitin-specific protease (UBP1) ofSaccharomyces cerevisiae in recombinantEscherichia coli.Biotechnol. Bioprocess Eng. 10:599–602.

    Article  CAS  Google Scholar 

  7. Sharma, S. K., D. B. Evans, A. F. Vosters, T. J. McQuade, and W. G. Tarpley (1991) Metal affinity chromatography of recombinant HIV-1 reverse transcriptase containing a human renin cleavable metal binding domain.Biotechnol. Appl. Biochem. 14:69–81.

    CAS  Google Scholar 

  8. Park, Y. C., S. J. Kim, J. H. Choi, W. H. Lee, K. M. Park, M. Kawamukai, Y. W. Ryu, and J. H. Seo (2005) Batch and fed-batch production of coenzyme Q(10) in recombinantEscherichia coli containing the decaprenyl diphosphate synthase gene fromGluconobacter suboxydans.Appl. Microbiol. Biotechnol. 67: 192–196.

    Article  CAS  Google Scholar 

  9. Wang, Y., P. Du, R. Gan, Z. Li, and Q. Ye (2005) Fedbatch cultivation ofEscherichia coli YK537 (pAET-8) for production ofphoA promoter-controlled human epidermal growth factor.Biotechnol. Bioprocess Eng. 10: 149–154.

    Article  CAS  Google Scholar 

  10. Matsui, T., H. Yokota, S. Sato, S. Mukataka, and J. Takahashi (1989) Pressurized culture ofEscherichia coli for a high concentration.Agric. Biol. Chem. 53: 2115–2120.

    CAS  Google Scholar 

  11. Strandberg, L. and S. O. Enfors (1991) Batch and fed batch cultivations for the temperature induced production of a recombinant protein inEscherichia coli.Biotechnol. Lett. 13: 609–614.

    Article  CAS  Google Scholar 

  12. Jensen, E. B. and S. Carlsen (1990) Production of recombinant human growth hormone inEscherichia coli: Expression of different precursors and physiological effects of glucose, acetate, and salts.Biotechnol. Bioeng. 36: 1–11.

    Article  CAS  Google Scholar 

  13. Lan, J. C., T. C. Ling, G. Hamilton, and A. Lyddiatt (2006) A fermentation strategy for anti-MUC1 C595 diabody expression in recombinantEscherichia coli.Biotechnol. Bioprocess Eng. 11: 425–431.

    Article  CAS  Google Scholar 

  14. Luli, G. W. and W. R. Strohl (1990) Comparison of growth, acetate production, and acetate inhibition ofEscherichia coli strains in batch and fed-batch fermentations.Appl. Environ. Microbiol. 56: 1004–1011.

    CAS  Google Scholar 

  15. Gleiser, I. E. and S. Bauer (1981) Growth ofEscherichia coli W to high cell concentration by oxygen level linked control of carbon source concentration.Biotechnol. Bioeng. 23: 1015–1021.

    Article  CAS  Google Scholar 

  16. Rinas, U., H. A. Kracke-Helm, and K. Schugerl (1989) Glucose as a substrate in recombinant strain fermentation technology: by-product formation, degradation and intracellular accumulation of recombinant protein.Appl. Microbiol. Biotechnol. 31: 163–167.

    Article  CAS  Google Scholar 

  17. Yee, L. and H. W. Blanch (1993) Recombinant trypsin production in high cell density fed-batch cultures inEscherichia coli.Biotechnol. Bioeng. 41: 781–790.

    Article  CAS  Google Scholar 

  18. Birch, R. M. and G. M. Walker (2000) Influence of magnesium ions on heat shock and ethanol stress responses ofSaccharomyces cerevisiae.Enzyme Microb. Technol. 26: 678–687.

    Article  CAS  Google Scholar 

  19. Wouters, J. A., H. H. Kamphuis, J. Hugenholtz, O. P. Kuipers, W. M. de Vos, and T. Abee (2000) Changes in glycolytic activity ofLactococcus lactis induced by low temperature.Appl. Environ. Microbiol. 66: 3686–3691.

    Article  CAS  Google Scholar 

  20. Buttrick, P. (2006) The regulation of heat shock protein expression: How, when and where.J. Mol. Cell. Cardiol. 41: 785–786.

    Article  CAS  Google Scholar 

  21. Lamotte, D., M. Ouzzine, S. Fournel-Gigleux, J. Magdalou, and J. Boudrant (1996) A temperature profile in batch culture to increase the production of the recombinant UDP-glucuronosyltransferase 2B4 inEscherichia coli.Process Biochem. 31: 235–241.

    Article  CAS  Google Scholar 

  22. Lukacsovich, T., G. Baliko, A. Orosz, E. Balla, and P. Venetianer (1990) New approaches to increase the expression and stability of cloned foreign genes inEscherichia coli.J. Biotechnol. 13: 243–250.

    Article  CAS  Google Scholar 

  23. Rasmussen, L. J., A. Lobner-Olesen, and M. G. Marinus (1995) Growth-rate-dependent transcription initiation from the dam P2 promoter.Gene 157: 213–215.

    Article  CAS  Google Scholar 

  24. Murray, H. D., J. Alex Appleman, and R. L. Gourse (2003) Regulation of theEscherichia coli rrnB P2 promoter.J. Bacteriol. 185: 28–34.

    Article  CAS  Google Scholar 

  25. Kim, S. G., D. H. Kweon, D. H. Lee, Y. C. Park, and J. H. Seo (2005) Coexpression of folding accessory proteins for production of active cyclodextrin glycosyltransferase ofBacillus macerans in recombinantEscherichia coli.Protein Expr. Purif. 41: 426–432.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, YJ., Park, KH., Lee, SY. et al. Effects of temperature shift strategies on human preproinsulin production in the fed-batch fermentation of recombinantEscherichia coli . Biotechnol. Bioprocess Eng. 12, 556–561 (2007). https://doi.org/10.1007/BF02931354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931354

Keywords

Navigation