Advertisement

Folia Microbiologica

, Volume 52, Issue 3, pp 253–260 | Cite as

Removal of 2,4-dinitrotoluene from concrete using bioremediation, agar extraction, and photocatalysis

  • S. R. Phutane
  • J. N. Renner
  • S. L. Nelson
  • W. S. Seames
  • J. Páca
  • T. J. Sundstrom
  • E. I. Kozliak
Article

Abstract

Three methods,i.e. bioremediation by application of bacteria-laden agar, physical absorption of DNT by agar, or illumination by UV light were evaluated for the removal of 2,4-dinitrotoluene (DNT) from building-grade concrete. DNT biodegradation byPseudomonas putida TOD was turned “on” and “off” by using toluene as a co-substrate thus allowing for rate-limiting step assessment. Bioremediation efficiency can be >95–97 % in 5–7 d if the process occurs at optimum growth temperature with the biological processes appearing to be rate-limiting. Sterile agar can remove up to 80 % of DNT from concrete thus allowing DNT desorption and biodegradation to be conducted separately. Photoremediation results in 50 % DNT removal in 9–12 d with no further removal, most likely due to mass transfer limitations.

Keywords

Agar Toluene Biological Process Growth Temperature Optimum Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

DNT

2,4-dinitrotoluene

TNT

trinitrotoluene

MB

mass balance

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beklemishev M.K., Kozliak E.I.: Bioremediation of concrete contaminated withn-hexadecane and naphthalene.Acta Biotechnol. 2–3, 197–210 (2003).CrossRefGoogle Scholar
  2. Bradley P.M., Chapelle F.H., Landmeyer J.E., Schumacher J.G.: Potential for intrinsic bioremediation of DNT-contaminated aquifer.Ground Water 35, 12–17 (1997).CrossRefGoogle Scholar
  3. Datta S.K., Hollowell G.P., Hashem F.M., Kuykendall L.D.: Enhanced bioremediation of soil containing 2,4-dinitrotoluene by a genetically modifiedSinorhizobium meliloti.Soil Biol.Biochem. 35, 667–675 (2003).CrossRefGoogle Scholar
  4. Dillert R., Brandt M., Fornefett I., Siebers U., Bahnemann D.: Photocatalytic degradation of trinitrotoluene and other nitroaromatic compounds.Chemosphere 30, 2333–2341 (1995).CrossRefGoogle Scholar
  5. Fortner J.D., Zhang C., Spain J.C., Hughes J.B.: Soil column evaluation of factors controlling biodegradation of DNT in the vadose zone.Environ.Sci.Technol. 37, 3382–3391 (2003).PubMedCrossRefGoogle Scholar
  6. Gupta G., Bhaskaran H.: Use of poultry litter for biodegradation of soil contaminated with 2,4- and 2,6-dinitrotoluene.J.Hazard.Mater. 116, 167–171 (2004).PubMedCrossRefGoogle Scholar
  7. Kalafut T., Wales M.E., Rastogi V.K., Naumova R.P., Zaripova S.K., Mild J.R.: Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria.Curr.Microbiol. 36, 45–54 (1998).PubMedCrossRefGoogle Scholar
  8. Kanekar P., Dautpure P., Sarnaik S.: Biodegradation of nitro-explosives.Indian J.Exp.Biol. 41, 991–1001 (2003).PubMedGoogle Scholar
  9. Kozliak E.I., Ostlie-Dunn T.L., Jacobson M.L., Mattson S.R., Domack R.T.: Efficient steady-state VOC removal from air by live bacteria immobilized on fiber supports.Bioremediation J. 4, 81–96 (2000).CrossRefGoogle Scholar
  10. Kozliak E.I.: Photocatalyst-induced reduction of semivolatile organic chemicals absorbed in solid materials.PCT/US Pat.Appl. 2005/029904; Internat. Publ. WO 2006/023898 A2 (2006).Google Scholar
  11. Kubátová A., Matucha M., Erbanová P., Novotný Č., Vlasáková V., Šašek V.: Investigation into PCB biodegradation using uniformly14C-labeled dichlorobiphenyl.Isotop.Environ.Health Stud. 34, 325–334 (1998).CrossRefGoogle Scholar
  12. Kumar S., Davis A.P.: Heterogeneous photocatalytic oxidation of nitrotoluenes.Water Environ.Res. 69, 1238–1245 (1997).CrossRefGoogle Scholar
  13. Low G.K., Mcevoy S.R., Matthews R.W.: Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms.Environ.Sci.Technol. 25, 460–467 (1991).CrossRefGoogle Scholar
  14. Müller R.H., Müller R.A., Jahn Y., Babel W.: Bioremediation of building material contaminated with herbicides.Environ.Sci.Pollut.Contr.Ser. 22, 121–131 (2000).Google Scholar
  15. Nishino S.F., Paoli G.C., Spain J.C.: Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene.Appl.Environ.Microbiol. 66, 2139–2147 (2000).PubMedCrossRefGoogle Scholar
  16. Peterson M.W., Turner J.A., Nozik A.J.: Mechanistic studies of the photocatalytic behavior of TiO2. Particles in a photoelectrochemical slurry cell and the relevance to photodetoxification reactions.J.Phys.Chem. 95, 221–225 (1991).CrossRefGoogle Scholar
  17. Phelan J.M., Barnett J.L.: Solubility of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene in water.J.Chem.Eng.Data 46, 375–376 (2001).CrossRefGoogle Scholar
  18. Popova I.E., Sundstrom T.J., Beklemishev M.K., Seames W.S., Frihart C.R., Kozliak E.I.: Penetration of naphthalene,n-hexadecane, and 2,4-dinitrotoluene into building grade southern yellow pine softwood: a qualitative study.Forest Prod.J. 56, 68–75 (2006).Google Scholar
  19. Snellinx Z., Taghavi S., Vangronsveld J., Lelie D.: Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterization.Biodegradation 14, 19–29 (2003).PubMedCrossRefGoogle Scholar
  20. Spain J.C.: Biodegradation of nitroaromatic compounds.Ann.Rev.Microbiol. 49, 523–555 (1995).CrossRefGoogle Scholar
  21. Spanggord R.J., Spain J.C., Nishino S.F., Mortelmans K.E.: Biodegradation of 2,4-dinitrotoluene byPseudomonas sp.Appl.Environ.Microbiol. 57, 3200–3205 (1991).PubMedGoogle Scholar
  22. Zhang C., Hughes J.B., Nishino S.F., Spain J.C.: Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations.Environ.Sci.Technol. 34, 2810–2816 (2000).CrossRefGoogle Scholar
  23. Zhang C., Daprato R.C., Nishino S.F., Spain J.C., Hughes J.B.: Remediation of dinitrotoluene contaminated soils from former ammunition plants: soil washing efficiency and effective process monitoring in bioslurry reactors.J.Hazard.Mater. B87, 139–154 (2001).CrossRefGoogle Scholar
  24. Zheng Z., Obbard J.P.: Removal of polycyclic aromatic hydrocarbons from soil using surfactants and white rot fungusPhanerochaete chrysosporium.J.Chem.Technol.Biotechnol. 75, 1183–1189 (2000).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2007

Authors and Affiliations

  • S. R. Phutane
    • 1
  • J. N. Renner
    • 1
  • S. L. Nelson
    • 1
  • W. S. Seames
    • 1
  • J. Páca
    • 2
  • T. J. Sundstrom
    • 3
  • E. I. Kozliak
    • 3
  1. 1.Department of Chemical EngineeringUniversity of North DakotaGrand ForksUSA
  2. 2.Department of BiotechnologyInstitute of Chemical TechnologyPragueCzechia
  3. 3.Department of ChemistryUniversity of North DakotaGrand ForksUSA

Personalised recommendations