Folia Microbiologica

, Volume 50, Issue 1, pp 63–69 | Cite as

Quantitative analysis of streptococcal exoprotein flow to the host receptor — Exact basis for therapy of tumors and alzheimer’s disease

  • F. J. Zahradnik


The basis of a bacterial pathogenic process consists in the change of a certain host structure to a completely different one. This is accomplished by binding of a bacterial protein product to the host structure. Streptococcal NAD+-nucleosidase was explored as to its binding to the host receptor represented by beef heart extract. The bacterial product was found to bind to the host structure until the available host structure was fully saturated. The similarity of the above flows of macromolecules with some models of morphogenesis indicates the existence of diseases associated with the flow of a protein to the undesirable site in the organism. In such a case therapy with low-molar-mass substances is wrong in principle.


Bacterial Product Host Structure Host Receptor Host Component Undesirable Component 





host compound




active enzyme complex




carcinoembryonal antigen


bacterial (pathogenic) product


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelev G.I.: α-Fetoprotein as a marker of embryo-specific differentiations in normal and tumor tissues.Transplant.Rev.20, 3–37 (1974).PubMedGoogle Scholar
  2. Ajdic D., McShan W.N., Savic D.J., Gerlach D., Ferretti J.J.: The NAD-glycohydrolase (nga) gene ofStreptococcus pyogenes.FEMS Microbiol.Lett.191, 235–241 (2000).PubMedCrossRefGoogle Scholar
  3. Barger S.W., Hörster D., Furukawa K., Goodman Y., Krieglstein J., Mattson M.P.: Tumor necrosis factors α and β protect neurons against amyloid β-peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation.Proc.Nat.Acad.Sci.USA92, 9328–9332 (1995).PubMedCrossRefGoogle Scholar
  4. Berding C., Haken H.: Pattern formation in morphogenesis. Analytical treatment of the Gierer-Meinhardt model on a sphere.J.Math.Biol.14, 133–151 (1982).PubMedCrossRefGoogle Scholar
  5. Brenneman D.E., Hauser J., Neale E., Rubinraut S., Fridkin M., Davidson A., Gozes I.: Activity-dependent neurotrophic factor: structure-activity relationships of femtomolar-acting peptides.J.Pharm.Exp.Ther.285, 619–627 (1998).Google Scholar
  6. Chaput J.C., Rain B., Cassan P., Martin E.: Hepatome avec α-1 fętoproteine serique simulant une carcinose hepatique secondaire.Nouv.Presse Med.31, 2057–2064 (1973).Google Scholar
  7. Cooke J., Zeeman E.: A clock and wavefront model for control of the number of repeated structures during animal morphogenesis.J.Theor.Biol.58, 455–476 (1976).PubMedCrossRefGoogle Scholar
  8. Davis B.D., Tai P.C.: The mechanism of protein secretion across membranes.Nature283, 433–438 (1980).PubMedCrossRefGoogle Scholar
  9. Dayhoff M.O.:Atlas of Protein Sequence and Structure 1972, Vol. 5. National Biomedical Research Foundation-Georgetown University Medical Center, Washington (DC) 1972.Google Scholar
  10. Diez M., Cerdan F.J., Pollan M., Maestro M.L., Ortega M.D., Martinez S., Moreno G., Balibrea J.L.: Prognostic significance of preoperative serum CA 19-9 assay in patients with colorectal carcinoma.Anticancer Res.14, 2819–2825 (1994).PubMedGoogle Scholar
  11. Dor, S., Kar S., Quirion R.: Insulin-like growth factor I protects and rescues hippocampal neurons against β-amyloid- and human amylin-induced toxicity.Proc.Nat.Acad.Sci.USA94, 4772–4777 (1997).CrossRefGoogle Scholar
  12. Ellingboe A.H.: Changing concepts in host-pathogen genetics.Ann.Rev.Phytopathol.19, 125–143 (1981).CrossRefGoogle Scholar
  13. Fernandez-Fernandez L., Tejero E., Tieso A., Victorzon M., Haglund C., Lundin J., Roberts P.J.: Significance of CA 72-4 in colorectal carcinoma. Comparison with CEA and CA 19-9.Eur.J.Surg.Oncol.21, 388–390 (1995).PubMedCrossRefGoogle Scholar
  14. Flor H.H.: Current status of the gene-for-gene concept.Ann.Rev.Phytopathol.9, 275–296 (1971).CrossRefGoogle Scholar
  15. Gitlin D., Boesman M.: Sites of serum α-fetoprotein synthesis in human colonic carcinomata and in rat.J.Clin.Invest.46, 1010–1016 (1967).PubMedGoogle Scholar
  16. Gold P., Freedman S.O.: Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and adsorption techniques.J.Exp.Med.121, 439–462 (1965).PubMedCrossRefGoogle Scholar
  17. Gooder H.: Antistreptolysin-O: its interaction with streptolysin O, its titration and a comparison of some standard preparations.Bull.WHO25, 173–183 (1961).PubMedGoogle Scholar
  18. Goodwin B., Cohen M.: A phase-shift model for the spatial and temporal organization of developing systems.J.Theor.Biol.25, 49–107 (1969).PubMedCrossRefGoogle Scholar
  19. Guadagni F., Roselli M., Cosimelli M., Ferroni P., Spila A., Cavaliere F., Casaldi V., Wappner G., Abbolito M.R., Greiner J.W.: CA 72-4 serum marker — a new tool in the management of carcinoma patients.Cancer Invest.13, 227–238 (1995).PubMedCrossRefGoogle Scholar
  20. Harris M.E., Hensley K., Butterfield D.A., Leedle R.A., Carney J.M.: Direct evidence of oxidative injury produced by the Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons.Exp.Neurol.131, 193–202 (1995).PubMedCrossRefGoogle Scholar
  21. Hashimoto Y., Ito Y., Niikura T., Shao Z., Hata M., Oyama F., Nishimoto I.: Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein.Biochem.Biophys.Res.Comm.283, 460–468 (2001a).PubMedCrossRefGoogle Scholar
  22. Hashimoto Y., Niikura T., Ito Y., Sudo H., Hata M., Arakawa E., Abe Y., Kita Y., Nishimoto I.: Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults.J.Neurosci.21, 9235–9245 (2001b).PubMedGoogle Scholar
  23. Hashimoto Y., Niikura T., Tajima H., Yasukawa T., Sudo H., Ito Y., Kita Y., Kawasumi M., Kouyama K., Doyu M., Sobue G., Koide T., Tsuji S., Lang J., Kurokawa K., Nishimoto I.: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ.Proc.Nat.Acad.Sci.USA98, 6336–6341 (2001c).PubMedCrossRefGoogle Scholar
  24. Hatlee D.M., Kozak J.J.: Stochastic flows in integral and fractal dimensions and morphogenesis.Proc.Nat.Acad.Sci.USA78, 972–975 (1981).PubMedCrossRefGoogle Scholar
  25. Hatlee M.D., Kozak J.J., Rothenberger G., Infelta P.P., Grätzel M.: Role of dimensionality and spatial extent in influencing intramicellar kinetic processes.J.Phys.Chem.84, 1508–1519 (1980).CrossRefGoogle Scholar
  26. Hendriks L., Van Broeckhoven C.: A β-A4 amyloid precursor protein gene and Alzheimer’s disease.Eur.J.Biochem.237, 6–15 (1996).PubMedCrossRefGoogle Scholar
  27. Holland J.J.: Enterovirus entrance into specific host cells, subsequent alterations of cell protein and nucleic acid synthesis.Bacteriol. Rev.28, 3–13 (1964).Google Scholar
  28. Hooker A.H., Saxena K.M.S.: Genetics of disease resistance in plants.Ann.Rev.Genet.5, 407–424 (1971).PubMedCrossRefGoogle Scholar
  29. Ingram R.S., Scott R.W., Tilghman S.M.: α-Fetoprotein and albumin genes are in tandem in the mouse genome.Proc.Nat.Acad.Sci.USA78, 4694–4698 (1981).PubMedCrossRefGoogle Scholar
  30. Jobling M.F., Huang X., Stewart L.R., Barnham K.J., Curtain C., Volitakis I., Perugini M., White A.R., Cherny R.A., Masters C.L., Barrow C.J., Collins S.J., Bush A.I., Cappai R.: Copper and zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP106–126.Biochemistry40, 8073–8084 (2001).PubMedCrossRefGoogle Scholar
  31. Joypaul B., Browning M., Newman E., Byrne D., Cuschieri A.: Comparison of serum CA 72-4 and CA 19-9 levels in gastric cancer patients and correlation with recurrence.Am.J.Surg.169, 595–599 (1995).PubMedCrossRefGoogle Scholar
  32. Kabawat S.E., Bast R.C., Bhan A.K., Welch R.C., Knapp R.C., Colvin R.B.: Tissue distribution of a celomic-epithelium-related antigen recognized by the monoclonal antibody OC 125.Internat.J.Gynecol.Pathol.2, 275–285 (1983).Google Scholar
  33. Kaneko I., Yamada N., Sakuraba Y., Kamenosono M., Tatumi S.: Suppression of mitochondrial succinate dehydrogenase, a primary target of β-amyloid, and its derivative racemized at Ser residue.J.Neurochem.65, 2585–2593 (1995).PubMedCrossRefGoogle Scholar
  34. Kuhlmann W.D.:α-Fetoprotein: cellular origin of a biological marker in rat liver under various experimental conditions.Virchows Arch.(Pathol.Anat.)393, 9–26 (1981).CrossRefGoogle Scholar
  35. LeBouton A.V., Masse J.P.: Ultrastructural immunocytochemistry of nascent albumin topology: proposed cytosolic folding and membrane transit of the protein.Anatom.Record.201, 203–223 (1981).CrossRefGoogle Scholar
  36. Liu T.Y., Neumann N.P., Elliott S.D., Moore S., Stein W.H.: Chemical properties of streptococcal proteinase and its zymogen.J.Biol.Chem.238, 251–256 (1963).PubMedGoogle Scholar
  37. Loo D.T., Copani A., Pike C.J., Whittemore E.R., Walencewicz A.J., Cotman C.W.: Apoptosis is induced by β-amyloid in cultured central nervous system neurons.Proc.Nat.Acad.Sci.USA90, 7951–7955 (1993).PubMedCrossRefGoogle Scholar
  38. Lorenzo A., Yuan M., Zhang Z., Paganetti P.A., Sturchler-Pierrat C., Staufenbiel M., Mautino J., Vigo F.S., Sommer B., Yankner B.A.: Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease.Nature Neurosci.3, 460–464 (2000).PubMedCrossRefGoogle Scholar
  39. Mark R.J., Keller J.N., Kruman I., Mattson M.P.: Basic FGF attenuates amyloid β-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons.Brain Res.756, 205–214 (1997).PubMedCrossRefGoogle Scholar
  40. Morgan F.J., Henschen A.: The structure of streptokinase. I. Cyanogen bromide fragmentation, amino acid composition and partial amino acid sequences.Biochim.Biophys.Acta181, 93–104 (1969).PubMedGoogle Scholar
  41. Nakyama T., Watanabe M., Teramoto T., Kitajima M.: Slope analysis of CA 19-9 and CEA for predicting recurrence in colorectal cancer patients.Anticancer Res.17, 1379–1382 (1997).Google Scholar
  42. Noguchi H.: Interaction of serum albumin and synthetic polyelectrolytes in various buffer systems.J.Phys.Chem.64, 185–187 (1960).CrossRefGoogle Scholar
  43. O’Brien M.J., Zamcheck N., Burke B., Kirkham S.E., Seravis C.A., Gottlieb L.S.: Immunocytochemical localization of carcinoembryonic antigen in benign and malignant colorectal tissues. Assessment of diagnostic value.Am.J.Clin.Pathol.75, 283–290 (1981).PubMedGoogle Scholar
  44. Odell G.M., Oster G., Alberch P., Burnside B.: The mechanical basis of morphogenesis.Develop.Biol.85, 446–462 (1981).PubMedCrossRefGoogle Scholar
  45. Ozegowski J.H., Gerlach D., Köhler W.: Purification and characterization of streptococcal hyaluronate lyase.Zbl.Bakt.Hyg.A249, 310–322 (1981).Google Scholar
  46. Papageorgiou S., Venieratos D.: A reaction-diffusion theory of morphogenesis with inherent pattern invariance under scale variations.J.Theor.Biol.100, 57–79 (1983).PubMedCrossRefGoogle Scholar
  47. Peters T. Jr.: Serum albumin, pp. 133–181 in F.W. Putnam (Ed.):The Plasma Proteins, Structure, Function and Genetic Control, Vol. 1. Academic Press, New York-San Francisco-London 1975.Google Scholar
  48. Roher A.E., Lowenson J.D., Clarke S., Wolkow C., Wang R., Cotter R.J., Reardon I.M., Zurcher-Neely H.A., Heinrikson R.L., Ball M.J., Greenberg B.D.: Structural alterations in the peptide backbone of β-amyloid core protein may account for its deposition and stability in Alzheimer’s disease.J.Biol.Chem.268, 3072–3083 (1993a).PubMedGoogle Scholar
  49. Roher A.E., Lowenson J.D., Clarke S., Woods A.S., Cotter R.J., Gowing F., Ball M.J.: β-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implication for the pathology of Alzheimer disease.Proc.Nat.Acad.Sci.USA90, 10836–10840 (1993b).PubMedCrossRefGoogle Scholar
  50. Rohn T.T., Ivins K.J., Bahr B.A., Cotman C.W., Cribbs D.H.: A monoclonal antibody to amyloid precursor protein induces neuronal apoptosis.J.Neurochem.74, 2331–2342 (2000).PubMedCrossRefGoogle Scholar
  51. Rottkamp C.A., Raina A.K., Zhu X., Gaier E., Bush A.I., Atwood C.S., Chevion M., Perry G., Smith M.A.: Redox-active iron mediates amyloid-β toxicity.Free Radical Biol.Med.30, 447–450 (2001).CrossRefGoogle Scholar
  52. Ruoslahti E., Seppälä M.: Studies of carcinofetal proteins. III. Development of radioimmunoassay for α-fetoprotein. Demonstration of α-fetoprotein in sera of healthy human adults.Internat.J.Cancer8, 347–383 (1971).CrossRefGoogle Scholar
  53. Ruoslahti E., Seppäla M.: α-Fetoprotein in cancer and fetal development.Adv.Cancer Res.29, 275–346 (1979).PubMedCrossRefGoogle Scholar
  54. Scheele G., Jacoby R., Carne T.: Mechanism of compartmentation of secretory proteins: transport of exocrine pancreatic proteins across the microsomal membrane.J.Cell.Biol.87, 611–628 (1980).PubMedCrossRefGoogle Scholar
  55. Sela M., Steiner L.A.: Inhibition of lysozyme by some copolymers of amino acids.Biochemistry2, 416–421 (1963).PubMedCrossRefGoogle Scholar
  56. Turing A.M.: The chemical basis of morphogenesis.Phil.Trans.Roy.Soc.London Ser.B237, 37–72 (1952).CrossRefGoogle Scholar
  57. Ueda K., Hayaishi O.: ADP-ribosylation.Ann.Rev.Biochem.54, 73–100 (1985).PubMedCrossRefGoogle Scholar
  58. Wolpert L.: Positional information and the spatial pattern of cellular differentiation.J.Theor.Biol.25, 1–49 (1969).PubMedCrossRefGoogle Scholar
  59. Yankner B.A., Duffy L.K., Kirschner D.A.: Neurotrophic and neurotoxic effect of amyloid-β protein: reversal by tachykinin neuropeptides.Science250, 279–282 (1990).PubMedCrossRefGoogle Scholar
  60. Zahradník F.J.: Streptococcal extracellular NAD-glycohydrolase. Optimal temperature and activation by cysteine.Folia Microbiol.22, 92–97 (1977).CrossRefGoogle Scholar
  61. Zahradnik F.J.: Streptococcal extracellular NAD+ nucleosidase. Characterization of changes occurring during purification.Folia Microbiol.25, 40–49 (1980).CrossRefGoogle Scholar
  62. Zahradník F.J.: Enzymes are open systems.IUBMB Life49, 255–257 (2000).PubMedCrossRefGoogle Scholar
  63. Zahradník F.J.: Kinetic properties of fractions of extracellular NAD+ nucleosidase fromStreptococcus pyogenes as an example of host selection by a pathogen: possible role of serum albumin in the organism.Folia Microbiol.46, 3–10 (2001).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2005

Authors and Affiliations

  • F. J. Zahradnik
    • 1
  1. 1.Institute of Microbiology, Faculty of MedicineCharles UniversityPlzenCzechia

Personalised recommendations