Advertisement

Folia Microbiologica

, Volume 48, Issue 1, pp 76–82 | Cite as

Long-term fertilization affects the abundance of saprotrophic microfungi degrading resistant forms of soil organic matter

  • M. Gryndler
  • H. Hršelová
  • J. Klír
  • J. Kubát
  • J. Votruba
Article

Abstract

The effect of mineral and organic fertilization on the occurrence of soil microorganisms was determined in a field experiment. The colony-forming unit counts of saprotrophic microfungi, when estimated on a silicate gel medium containing fulvic acid as a sole carbon source, increased significantly with increasing doses of mineral and organic fertilization. Partial correlation analysis indicated that, unlike bacteria and actinomycetes, microfungi utilizing fulvic acid were significantly associated with soil organic carbon. No significant effects on bacteria and microfungi counted on common microbiological media were observed but counts of actinomycetes increased in a manured soil extensively fertilized by a mineral fertilizer. Fulvic acid utilizing microfungi, which are associated with areas rich in organics, play possibly the main role in mineralization of resistant forms of soil organic matter.

Keywords

Soil Organic Matter Soil Organic Carbon Humic Substance Colony Form Unit Fulvic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Magid H.M., Rabie R.K., Sabrah R.E.A., Abdel-Aal S.I.: The interrelationship between microbial numbers, application rate and biodegradation products of two organic manures in a sandy soil.Arch.Gulf J.Sci.Res.14, 641–657 (1996).Google Scholar
  2. Anderson T.H., Domsch K.H.: Ratio of microbial biomass carbon to total organic carbon in arable soils.Soil Biol.Biochem.21, 471–479 (1989).CrossRefGoogle Scholar
  3. Atlas R.M., Parks L.C.:Handbook of Microbiological Media, p. 55. CRC Press, Boca Raton (USA) 1993.Google Scholar
  4. Azo S., Sakai I.: Studies on the physiological effects of humic acid. Part 1. Uptake of humic acid by crop plants and its physiological effects.Soil Sci.Plant Nutr.9, 1–91 (1963).Google Scholar
  5. Bagstam G.: Population changes in microorganisms during composting of spruce bark- I. Influence of temperature control.Eur. J.Appl.Microbiol.Biotechnol.5, 315–330 (1978).CrossRefGoogle Scholar
  6. Curtin D., Steppuhn H., Campbell C.A., Biederbeck V.O.: Carbon and nitrogen mineralization in soil treated with chloride and phosphate salts.Can.J.Soil Sci.79, 427–429 (1999).Google Scholar
  7. Cyhelský L., Kańoková J., Novák I.:Theory of Statistics, 2nd ed., pp. 123–124. SNTL Publishers, Prague (Czechia) 1986.Google Scholar
  8. Drury C.F., Oloya T.O., McKenney D.J., Gregorich E.G., Tan C.S., Van Luyk C.L.: Long-term effects of fertilization and rotation on denitrification and soil carbon.Soil Sci.Soc.Am.J.62, 1572–1579 (1998).Google Scholar
  9. Führ F., Sauerbeck D.: The uptake of colloidal organic substances by plant roots as shown by experiments with14C-labeled humus compounds, pp. 317–328 inIsotopes in Plant Nutrition and Physiology. International Atomic Energy Agency, Vienna 1967.Google Scholar
  10. Gramss G., Ziegenhagen D., Sorge S.: Egradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes.Microb.Ecol.37, 140–151 (1999).PubMedCrossRefGoogle Scholar
  11. Gregorich E.G., Rochette P., McGuire S., Liang B.C., Lessard R.: Soluble organic carbon and carbon dioxide fluxes in mazie fields receiving spring-applied manure.J.Environ.Qual.27, 209–214 (1998).CrossRefGoogle Scholar
  12. Griffith B.S., Ritz K., Ebblewhite N., Dobson G.: Soil microbial community structure: effects of substrate loading rates.Soil Biol. Biochem.31, 145–153 (1999).CrossRefGoogle Scholar
  13. Hršelová H., Chvátalová I., Vosátka M., Klír J., Gryndler M.: Correlation of abundance of arbuscular mycorrhizal fungi, bacteria and saprophytic microfungi with soil carbon, nitrogen and phosphorus,Folia Microbiol.44, 683–687 (1999).CrossRefGoogle Scholar
  14. Janzen H.H., Campbell C.A., Brandt S.A., Lafond G.P., Townley-Smith L.: Light fraction organic matter in soils from long-term rotations.Soil Sci.Soc.Am.J.56, 1799–1806 (1992).Google Scholar
  15. Kunc F., Lokhmacheva R.A., Macura J.: Biological decomposition of fulvic acid preparations.Folia Microbiol.21, 257–267 (1976).CrossRefGoogle Scholar
  16. Loiseau P., Soussana J.F.: Elevated [CO2], temperature increase and N supply effects on the turnover of below-ground carbon in a temperate grassland ecosystem.Plant & Soil210, 233–247 (1999).CrossRefGoogle Scholar
  17. Michálek J., Osecky P., Pešek J., Rod J., Vondráček J.:Biometrics I. SPN Publishers, Prague (Czechia) 1982.Google Scholar
  18. Pizzeghello D., Nicolini G., Nardi S.: Hormone-like activity of humic substances inFagus sylvaticae forests.New Phytol.151, 647–657 (2001).CrossRefGoogle Scholar
  19. Reinertsen S.A., Elliott L.F., Cochran V.L., Campbell G.S.: Role of available carbon and nitrogen in determining the rate of wheat straw decomposition.Soil Biol.Biochem.16, 459–464 (1984).CrossRefGoogle Scholar
  20. Smith N.R., Dawson V.T.: The bacteriostatic action of Bengal Rose in media used for plate counts of soil fungi.Soil Sci.58, 467–471 (1944).CrossRefGoogle Scholar
  21. Tan K.H., Nopamornbodi V.: Fulvic acid and the growth of the ectomycorrhizal fungus.Pisolithus tinctorius. Soil Biol.Biochem.11, 651–654 (1979).Google Scholar
  22. Taylor C.B.: The nutritional requirements of predominant flora of the soil.Proc.Soc.Appl.Bacteriol.14, 101–111 (1951).Google Scholar
  23. Witter E., Kanal A.: Characteristics of the soil microbial biomass in soils from a long-term field experiment with different levels of C input.Appl.Soil Ecol.10, 37–49 (1998).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  • M. Gryndler
    • 1
  • H. Hršelová
    • 1
  • J. Klír
    • 2
  • J. Kubát
    • 2
  • J. Votruba
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia
  2. 2.Research Institute of Crop ProductionPragueCzechia

Personalised recommendations