Skip to main content
Log in

Molecular features of the cytolytic pore-forming bacterial protein toxins

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The repertoire of the cytolytic pore-forming protein toxins (PFT) comprises 81 identified members. The essential feature of these cytolysins is their capacity to provoke the formation of hydrophilic pores in the cytoplasmic membranes of target eukaryotic cells. This process results from the binding of the proteins on the cell surface, followed by their oligomerization which leads to the insertion of the oligomers into the membrane and formation of protein-lined channels. It impairs the osmotic balance of the cell and causes cytolysis. In this review the molecular aspects of a number of important PFT and their respective encoding structural genes will be briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrami L., Fivaz M., Decroly E., Seidah N.G., François J., Thomas G., Leppla S., Buckley J.T., van der Goot F.G.: The poreforming toxin proaerolysin is processed by furin.J.Biol.Chem. 273, 32656–32661 (1988).

    Article  Google Scholar 

  • Aktories K., Just I.:Bacterial Protein Toxins, Handbook of Experimental Pharmacology, Vol. 145. Springer-Verlag, Berlin (Germany) 2000.

    Google Scholar 

  • Alouf J.E.: Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin).Pharmacol.Ther. 11, 211–270 (1980).

    Article  Google Scholar 

  • Alouf J.E.: Introduction to the family of the structurally related cholesterol-binding cytolysins (sulfhydryl-activated toxins), pp. 443–456 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Alouf J.E.: Cholesterol-binding cytolytic protein toxins.Internat.J.Med.Microbiol. 290, 351–356 (2000).

    CAS  Google Scholar 

  • Alouf J.E.: Pore-forming bacterial protein toxins, pp. 1–14 in F.G. van der Goot (Ed.):Pore Forming Toxins. Springer-Verlag, Berlin (Germany) 2001.

    Google Scholar 

  • Alouf J.E., Freer J.H.:The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Alouf J.E., Palmer M.: Streptolysin O, pp. 459–473 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Alouf J.E., Dufourcq J., Siffert O., Thiaudière E., Geoffroy C.: Interaction of staphylococcal δ-toxin and synthetic analogues with erythrocytes and phospholipid vesicles. Biological and physical properties of the amphipathic peptides.Eur.J.Biochem. 183, 381–390 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Baida G., Budarina Z.I., Kuzmin P., Solonin A.S.: Complete nucleotide sequence and molecular characterization of hemolysin II gene fromBacillus cereus.FEMS Microbiol.Lett. 180, 7–14 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Bayley H.: Toxin structure part of a hole?Curr.Biol. 7, R763-R767 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer A.W., Rodbart M.: The effect of nucleic acids and carbohydrates on the formation of streptolysin S.J.Exp.Med. 88, 149–168 (1948).

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer A.W., Rudy B.: Interactions between membranes and cytolytic peptides.Biochim.Biophys.Acta 864, 123–141 (1986).

    PubMed  CAS  Google Scholar 

  • Bernheimer A.W., Avigad L.S., Kim K.-S.: Comparison of metridiolysin from the sea anemone with thiol-activated cytolysins from bacteria.Toxicon 17, 69–75 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi S., Tranum-Jensen J.: Mechanism of complement cytolysis and the concept of channel-forming proteins.Philos.Trans.Roy.Soc.London Ser. B 306, 311–324 (1984).

    Article  Google Scholar 

  • Bhakdi S., Tranum-Jensen J.: Damage to cell membranes by pore-forming bacterial cytolysins.Progr.Allergy 40, 1–43 (1988).

    CAS  Google Scholar 

  • Bhakdi S., Bayley H., Valeva A., Walev I., Walker B., Kehoe M., Palmer M.: Staphylococcal α-toxin, streptolysin-O, andEscherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins.Arch.Microbiol. 165, 73–79 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Billington S.J., Jost B.H., Songer J.G.: Thiol-activated cytolysins: structure, function and role in pathogenesis.FEMS Microbiol.Lett. 182, 197–205 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Braun V., Hertle R.: The family ofSerratia andProteus cytolysins, pp. 349–361 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Buckley A.T.: The channel-forming toxin aerolysin, pp. 362–372 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Carr A., Sledjeski D.D., Podbielski A., Boyle M.D., Kreikemeyer B.: Similarities between complement-mediated and streptolysin S-mediated hemolysis.J.Biol.Chem. 276, 41790–41796 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Comai M., Della-Serra M., Coariola M., Werner S., Colin D., Prevost G., Menestrina G.: Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal γ-hemolysins in lipid membranes.Mol.Microbiol. 44, 1251–1267 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Coote J.: The RTX toxins of Gram-negative bacterial pathogens, modulators of the host immune response.Rev.Med.Microbiol. 7, 53–62 (1996).

    Google Scholar 

  • Dourmashkin R.R., Rosse W.F.: Morphologic changes in the membranes of red blood cells undergoing hemolysis.Am.J.Med. 41, 699–710 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Dufourcq J., Castano S., Talbot J.-C.: δ-Toxin related hemolytic toxins and peptidic analogues, pp. 386–401 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Fivaz M., Abrami L., Tsitrin Y., van der Gott F.G.: Aerolysin fromAeromonas hydrophila and related toxins, pp. 35–52 in F.G. van der Goot (Ed.):Pore-Forming Toxins. Springer-Verlag, Berlin (Germany) 2001.

    Google Scholar 

  • Flanagan J., Collin N., Timoney J., Mitchell T., Mumford J.A., Chanter N.: Characterization of the hemolytic activity ofStreptococcus equi.Microb.Pathog. 24, 211–221 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Freer J.H., Birkbeck T.H.: Possible conformation of δ-lysin, a membrane-damaging peptide ofStaphylococcus aureus.J.Theor.Biol. 94, 535–540 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Gilbert R.J., Jimenez J.L., Chen S., Tickle I.J., Rossjohn J., Parker M., Andrew P.W., Saibil H.R.: Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin ofStreptococcus pneumoniae.Cell 97, 647–655 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg I.: Is streptolysin S of group A streptococci a virulence factor?Acta Pathol.Microbiol.Scand. 107, 1051–1059 (1999).

    CAS  Google Scholar 

  • Glaser P., Sakamoto H., Bellalou J., Ullman A., Danchin A.: Secretion of cyclolysin, the calmodulin-sensitive adenylatecyclasehemolysin bifunctional protein ofBordetella pertussis.EMBO J. 7, 3997–4004 (1988).

    PubMed  CAS  Google Scholar 

  • van der Goot F.G.: Plasticity of the transmembrane β-barrel.Trends Microbiol. 8, 89–90 (2000).

    Article  PubMed  Google Scholar 

  • van der Goot F.G.:Pore-forming Toxins. Springer-Verlag, Berlin (Germany) 2001.

    Google Scholar 

  • Gouaux E.: Channel-forming toxins: tales of transformation.Curr.Opin.Struct.Biol. 7, 566–573 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gouaux E.: α-Hemolysin fromStaphylococcus aureus: an archetype of β-barrel, channel-forming toxins.J.Struct.Biol. 121, 110–122 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Gouaux E., Hobaugh M., Song L.: α-Hemolysin, γ-hemolysin, and leukocidin fromStaphylococcus aureus: distant in sequence but similar in structure.Protein Sci. 6, 2631–2635 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Humar D., Datta V., Bast D.J., Beali B., De Azavedo J.C., Nizet V.: Streptolysin S and necrotizing infections produced by group G streptococcus.Lancet 359, 124–129 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hunter S.E.C., Brown G.J.E., Oyston P.C.F., Titball R.W.: Molecular genetics of β-toxin ofClostridium perfringens reveals sequence homology with α-toxin, γ-toxin and leukocidin ofStaphylococcus aureus.Infect.Immun. 61, 3958–3965 (1993).

    PubMed  CAS  Google Scholar 

  • König B., Köller M., Prevost G., Piemont Y., Alouf J.E., Schreiner A., König W.: Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, and erythrogenic toxin A): generation of interleukin-8.Infect.Immun. 62, 4831–4837 (1994).

    PubMed  Google Scholar 

  • König B., Prévost G., König W.: Composition of staphylococcal bi-component toxin determines pathophysiological reactions.J.Med.Microbiol. 46, 479–485 (1997).

    PubMed  Google Scholar 

  • Ladant D., Ullmann A.:Bordetella pertussis adenylate cyclase: a toxin with multiple talents.Trends Microbiol. 7, 172–176 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lally E.T., Hill R.B., Kieba I.R., Korostoff J.: The interaction between RTX toxins and target cells.Trends Microbiol. 7, 356–361 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lesieur C., Vecsey-Semin B., Abrami L., Fivaz M., van der Goot F.G.: Membrane insertion: the strategy of toxins.Mol.Membr.Biol. 14, 45–64 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Locht C.: Molecular aspects ofBordetella pertussis pathogenesis.Internat.Microbiol. 2, 137–144 (1999).

    CAS  Google Scholar 

  • Loridan C., Alouf J.E.: Purification of RNA-core induced streptolysin S, and isolation and hemolytic characterization of the carrier-free toxin.J.Gen.Microbiol. 132, 305–307 (1986).

    Google Scholar 

  • Ludwig A., Goebel W.: The family of the multigene encoded RTX toxins, pp. 330–338 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Lund T., de Buyser M.L., Granum P.E.: A new cytotoxin fromBacillus cereus that may cause necrotic enteritis.Mol.Microbiol. 38, 254–261 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lysons R.J., Kent K.A., Bland A.P., Sellwood R., Robinson W.F., Frost A.J.: A cytotoxic hemolysin fromTreponema hyodysenteriae, a probable virulence determinant in swine dysentery.J.Med.Microbiol. 34, 97–102 (1991).

    PubMed  CAS  Google Scholar 

  • Marchlewicz B.A., Duncan J.: Properties of a hemolysin produced by group B streptococci.Infect.Immun. 30, 805–813 (1980).

    PubMed  CAS  Google Scholar 

  • Mayer M.M.: Mechanism of cytolysis by complement.Proc.Nat.Acad.Sci.USA 69, 2954–2958 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Menestrina G., Vécsey-Semjén B.: Biophysical methods and model membranes for the study of bacterial pore-forming toxins, pp. 287–309 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Menestrina G., Mackman N., Holland I.B., Bhakdi S.:Escherichia coli hemolysin forms voltage-dependent ion channels in membranes.Biochim.Biophys.Acta 905, 109–117 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Menestrina G., Dalla Serra M., Pederzolli C., Bregante M., Gambale F.: Bacterial hemolysins and leucotoxins affect target cells by forming large exogenous pores into their plasma membrane:Escherichia coli hemolysin A a case example.Biosci.Rep. 15, 543–551 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Menestrina G., Dalla-Serra M., Prevost G.: Mode of action of β-barrel toxins of the staphylococcal γ-hemolysin family.Toxicon 39, 1661–1672 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Morgan P.J., Andrew P.W., Mitchell T.J.: Thiol-activated cytolysins.Rev.Med.Microbiol. 7, 221–229 (1996).

    Google Scholar 

  • Muir S., Koopman M.B.H., Libby S.J., Joens L.A., Heffron F., Kusters J.H.: Cloning and expression of aSerpula (Treponema)hyodysenteriae hemolysin gene.Infect.Immun. 60, 529–535 (1992).

    PubMed  CAS  Google Scholar 

  • Nizet V., Beall B., Bast D.B., Vivekananda D., Kilburn L., Low D.E., de Azavedo J.C.S.: Genetic locus for streptolysin S production by group A streptococcus.Infect.Immun. 68, 4245–4254 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Olson R., Nariya H., Yokota K., Kamio Y., Gouaux E.: Crystal structure of staphyloccal LukF delineates conformational changes accompanying formation of a transmembrane channel.Nature Struct.Biol. 6, 134–140 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Parker M.W., Buckley J.T., Postma J.P., Tucker A.D., Leonard K., Pattus F., Tsernoglou D.: Structure of theAeromonas toxin proaerolysin in its water-soluble and membrane-channel tates.Nature 367, 292–295 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Pedelacq J.D., Maveyraud L., Prevost G., Baba-Loussa L., Gonzalez A., Courcelle E., Shepard W., Monteil H., Samama J.P., Mourey L.: The structure of aStaphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins.Structure 7, 277–287 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Prévost G.: The bi-component staphylococcal leucocidins and γ-hemolysins (toxins), pp. 402–418 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Prévost G., Mourey L., Colin D.A., Menestrina G.: Staphylococcal pore-forming toxins, pp. 53–83 in F.G. van der Goot (Ed.):Pore-Forming Toxins. Springer-Verlag, Berlin (Germany) 2001.

    Google Scholar 

  • Rossjohn J., Feil S.C., McKinstry W.J., Tweten R.K., Parker M.W.: Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form.Cell 89, 685–692 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Salyers A., Whitt D.D.:Bacterial Pathogenesis: a Molecular Approach, 2nd ed. American Society for Microbiology Press, Washington (DC) 2002.

    Google Scholar 

  • Šebo P., Ladant A.: Repeat sequences in theBordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-terminal secretion signals by theEscherichia coli α-hemolysin translocator.Mol.Microbiol. 9, 999–1009 (1993).

    Article  PubMed  Google Scholar 

  • Šebo P., Glaser P., Sakamoto H., Ullmann A.: High-level synthesis of active adenylate cyclase toxin ofBordetella pertussis in a reconstructedEscherichia coli system.Gene 104, 19–24 (1991).

    Article  PubMed  Google Scholar 

  • Sekiya K., Satoh R., Danbara H., Futaesaku Y.: Electron microscopic evaluation of a two-step theory of pore-formation by streptolysin O.J.Bacteriol. 178, 6998–7002 (1996).

    PubMed  CAS  Google Scholar 

  • Sellman B.R., Kagan B.L., Tweten R.K.: Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation byClostridium septicum α-toxin.Mol.Microbiol. 23, 551–558 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Shatursky O., Heuck A.P., Shepard L.A., Rossjohn J., Parker M.W., Johnson A.E., Tweten R.K.: The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.Cell 99, 293–299 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Shinoda S.: Hemolysins ofVibrio cholerae and otherVibrio species, pp. 373–385 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.

    Google Scholar 

  • Song L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E.: Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore.Science 274, 1859–1866 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Staali L., Monteil H., Colin D.A.: The staphylococcal pore-forming lenkotoxins open Ca2+ channels in the membrane of human polymorphonuclear neutrophils.J.Membr.Biol. 162, 209–216 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Steiner K., Malke H.: Dual control of streptokinase and streptolysin S production by thecovRS andfasCAX two-component regulators inStreptococcus dysgalactiae subsp,equisimilis.Infect.Immun. 70, 3627–3636 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sugawara N., Tomita T., Kamio Y.: Assembly ofStaphylococcus aureus γ-hemolysin into a pore-forming ring-shaped complex on the surface of human erythrocytes.FEBS Lett. 410, 333–337 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Tweten R., Parker M., Johnson A.E.: The cholesterol-dependent cytolysins, pp. 15–33 in F.G. van der Goot (Ed.):Pore-forming Toxins. Springer-Verlag, Berlin (Germany) 2001.

    Google Scholar 

  • Valeva A., Palmer M., Bhakdi S.: Staphylococcal α-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages.Biochemistry 36, 13298–13304 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Vandana S., Raje. M, Krishnasastry M.V.: The role of the amino terminus in the kinetics and assembly ofα-hemolysin ofStaphylococcus aureus.J.Biol.Chem. 272, 24858–24863 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Welch R.A.: RTX structure and function: a story of numerous anomalies and few analogies in toxin biology, pp. 85–111 in F.G. van der Goot (Ed.):Pore-forming Toxins. Springer-Verlag, Berlin (Germany) 2001.

    Google Scholar 

  • Woltjes J., Legdeur-Velthuis H., de Graaf J.: Detection and characterization of hemolysin production inStreptococcus mutans.Infect.Immun. 31, 850–855 (1981).

    PubMed  CAS  Google Scholar 

  • Zitzer A., Palmer M., Weller U., Wassenaar T., Biermann C., Tranum-Jensen J., Bhakdi S.: Mode of primary binding of target membranes and pore formation induced byVibrio cytolysin (hemolysin).Eur.J.Biochem. 247, 209–216 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Alouf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alouf, J.E. Molecular features of the cytolytic pore-forming bacterial protein toxins. Folia Microbiol 48, 5–16 (2003). https://doi.org/10.1007/BF02931271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931271

Keywords

Navigation