Advertisement

Folia Microbiologica

, 48:5 | Cite as

Molecular features of the cytolytic pore-forming bacterial protein toxins

  • J. E. Alouf
Review

Abstract

The repertoire of the cytolytic pore-forming protein toxins (PFT) comprises 81 identified members. The essential feature of these cytolysins is their capacity to provoke the formation of hydrophilic pores in the cytoplasmic membranes of target eukaryotic cells. This process results from the binding of the proteins on the cell surface, followed by their oligomerization which leads to the insertion of the oligomers into the membrane and formation of protein-lined channels. It impairs the osmotic balance of the cell and causes cytolysis. In this review the molecular aspects of a number of important PFT and their respective encoding structural genes will be briefly described.

Keywords

Melittin Bordetella Pertussis Haemophilus Ducreyi Streptococcus Dysgalactiae Adenylate Cyclase Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrami L., Fivaz M., Decroly E., Seidah N.G., François J., Thomas G., Leppla S., Buckley J.T., van der Goot F.G.: The poreforming toxin proaerolysin is processed by furin.J.Biol.Chem. 273, 32656–32661 (1988).CrossRefGoogle Scholar
  2. Aktories K., Just I.:Bacterial Protein Toxins, Handbook of Experimental Pharmacology, Vol. 145. Springer-Verlag, Berlin (Germany) 2000.Google Scholar
  3. Alouf J.E.: Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin).Pharmacol.Ther. 11, 211–270 (1980).CrossRefGoogle Scholar
  4. Alouf J.E.: Introduction to the family of the structurally related cholesterol-binding cytolysins (sulfhydryl-activated toxins), pp. 443–456 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  5. Alouf J.E.: Cholesterol-binding cytolytic protein toxins.Internat.J.Med.Microbiol. 290, 351–356 (2000).Google Scholar
  6. Alouf J.E.: Pore-forming bacterial protein toxins, pp. 1–14 in F.G. van der Goot (Ed.):Pore Forming Toxins. Springer-Verlag, Berlin (Germany) 2001.Google Scholar
  7. Alouf J.E., Freer J.H.:The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  8. Alouf J.E., Palmer M.: Streptolysin O, pp. 459–473 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  9. Alouf J.E., Dufourcq J., Siffert O., Thiaudière E., Geoffroy C.: Interaction of staphylococcal δ-toxin and synthetic analogues with erythrocytes and phospholipid vesicles. Biological and physical properties of the amphipathic peptides.Eur.J.Biochem. 183, 381–390 (1989).PubMedCrossRefGoogle Scholar
  10. Baida G., Budarina Z.I., Kuzmin P., Solonin A.S.: Complete nucleotide sequence and molecular characterization of hemolysin II gene fromBacillus cereus.FEMS Microbiol.Lett. 180, 7–14 (1999).PubMedCrossRefGoogle Scholar
  11. Bayley H.: Toxin structure part of a hole?Curr.Biol. 7, R763-R767 (1997).PubMedCrossRefGoogle Scholar
  12. Bernheimer A.W., Rodbart M.: The effect of nucleic acids and carbohydrates on the formation of streptolysin S.J.Exp.Med. 88, 149–168 (1948).CrossRefPubMedGoogle Scholar
  13. Bernheimer A.W., Rudy B.: Interactions between membranes and cytolytic peptides.Biochim.Biophys.Acta 864, 123–141 (1986).PubMedGoogle Scholar
  14. Bernheimer A.W., Avigad L.S., Kim K.-S.: Comparison of metridiolysin from the sea anemone with thiol-activated cytolysins from bacteria.Toxicon 17, 69–75 (1979).PubMedCrossRefGoogle Scholar
  15. Bhakdi S., Tranum-Jensen J.: Mechanism of complement cytolysis and the concept of channel-forming proteins.Philos.Trans.Roy.Soc.London Ser. B 306, 311–324 (1984).CrossRefGoogle Scholar
  16. Bhakdi S., Tranum-Jensen J.: Damage to cell membranes by pore-forming bacterial cytolysins.Progr.Allergy 40, 1–43 (1988).Google Scholar
  17. Bhakdi S., Bayley H., Valeva A., Walev I., Walker B., Kehoe M., Palmer M.: Staphylococcal α-toxin, streptolysin-O, andEscherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins.Arch.Microbiol. 165, 73–79 (1996).PubMedCrossRefGoogle Scholar
  18. Billington S.J., Jost B.H., Songer J.G.: Thiol-activated cytolysins: structure, function and role in pathogenesis.FEMS Microbiol.Lett. 182, 197–205 (2000).PubMedCrossRefGoogle Scholar
  19. Braun V., Hertle R.: The family ofSerratia andProteus cytolysins, pp. 349–361 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  20. Buckley A.T.: The channel-forming toxin aerolysin, pp. 362–372 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  21. Carr A., Sledjeski D.D., Podbielski A., Boyle M.D., Kreikemeyer B.: Similarities between complement-mediated and streptolysin S-mediated hemolysis.J.Biol.Chem. 276, 41790–41796 (2001).PubMedCrossRefGoogle Scholar
  22. Comai M., Della-Serra M., Coariola M., Werner S., Colin D., Prevost G., Menestrina G.: Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal γ-hemolysins in lipid membranes.Mol.Microbiol. 44, 1251–1267 (2002).PubMedCrossRefGoogle Scholar
  23. Coote J.: The RTX toxins of Gram-negative bacterial pathogens, modulators of the host immune response.Rev.Med.Microbiol. 7, 53–62 (1996).Google Scholar
  24. Dourmashkin R.R., Rosse W.F.: Morphologic changes in the membranes of red blood cells undergoing hemolysis.Am.J.Med. 41, 699–710 (1966).PubMedCrossRefGoogle Scholar
  25. Dufourcq J., Castano S., Talbot J.-C.: δ-Toxin related hemolytic toxins and peptidic analogues, pp. 386–401 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  26. Fivaz M., Abrami L., Tsitrin Y., van der Gott F.G.: Aerolysin fromAeromonas hydrophila and related toxins, pp. 35–52 in F.G. van der Goot (Ed.):Pore-Forming Toxins. Springer-Verlag, Berlin (Germany) 2001.Google Scholar
  27. Flanagan J., Collin N., Timoney J., Mitchell T., Mumford J.A., Chanter N.: Characterization of the hemolytic activity ofStreptococcus equi.Microb.Pathog. 24, 211–221 (1998).PubMedCrossRefGoogle Scholar
  28. Freer J.H., Birkbeck T.H.: Possible conformation of δ-lysin, a membrane-damaging peptide ofStaphylococcus aureus.J.Theor.Biol. 94, 535–540 (1982).PubMedCrossRefGoogle Scholar
  29. Gilbert R.J., Jimenez J.L., Chen S., Tickle I.J., Rossjohn J., Parker M., Andrew P.W., Saibil H.R.: Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin ofStreptococcus pneumoniae.Cell 97, 647–655 (1999).PubMedCrossRefGoogle Scholar
  30. Ginsburg I.: Is streptolysin S of group A streptococci a virulence factor?Acta Pathol.Microbiol.Scand. 107, 1051–1059 (1999).Google Scholar
  31. Glaser P., Sakamoto H., Bellalou J., Ullman A., Danchin A.: Secretion of cyclolysin, the calmodulin-sensitive adenylatecyclasehemolysin bifunctional protein ofBordetella pertussis.EMBO J. 7, 3997–4004 (1988).PubMedGoogle Scholar
  32. van der Goot F.G.: Plasticity of the transmembrane β-barrel.Trends Microbiol. 8, 89–90 (2000).PubMedCrossRefGoogle Scholar
  33. van der Goot F.G.:Pore-forming Toxins. Springer-Verlag, Berlin (Germany) 2001.Google Scholar
  34. Gouaux E.: Channel-forming toxins: tales of transformation.Curr.Opin.Struct.Biol. 7, 566–573 (1997).PubMedCrossRefGoogle Scholar
  35. Gouaux E.: α-Hemolysin fromStaphylococcus aureus: an archetype of β-barrel, channel-forming toxins.J.Struct.Biol. 121, 110–122 (1998).PubMedCrossRefGoogle Scholar
  36. Gouaux E., Hobaugh M., Song L.: α-Hemolysin, γ-hemolysin, and leukocidin fromStaphylococcus aureus: distant in sequence but similar in structure.Protein Sci. 6, 2631–2635 (1997).PubMedCrossRefGoogle Scholar
  37. Humar D., Datta V., Bast D.J., Beali B., De Azavedo J.C., Nizet V.: Streptolysin S and necrotizing infections produced by group G streptococcus.Lancet 359, 124–129 (2002).PubMedCrossRefGoogle Scholar
  38. Hunter S.E.C., Brown G.J.E., Oyston P.C.F., Titball R.W.: Molecular genetics of β-toxin ofClostridium perfringens reveals sequence homology with α-toxin, γ-toxin and leukocidin ofStaphylococcus aureus.Infect.Immun. 61, 3958–3965 (1993).PubMedGoogle Scholar
  39. König B., Köller M., Prevost G., Piemont Y., Alouf J.E., Schreiner A., König W.: Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, and erythrogenic toxin A): generation of interleukin-8.Infect.Immun. 62, 4831–4837 (1994).PubMedGoogle Scholar
  40. König B., Prévost G., König W.: Composition of staphylococcal bi-component toxin determines pathophysiological reactions.J.Med.Microbiol. 46, 479–485 (1997).PubMedGoogle Scholar
  41. Ladant D., Ullmann A.:Bordetella pertussis adenylate cyclase: a toxin with multiple talents.Trends Microbiol. 7, 172–176 (1999).PubMedCrossRefGoogle Scholar
  42. Lally E.T., Hill R.B., Kieba I.R., Korostoff J.: The interaction between RTX toxins and target cells.Trends Microbiol. 7, 356–361 (1999).PubMedCrossRefGoogle Scholar
  43. Lesieur C., Vecsey-Semin B., Abrami L., Fivaz M., van der Goot F.G.: Membrane insertion: the strategy of toxins.Mol.Membr.Biol. 14, 45–64 (1997).PubMedCrossRefGoogle Scholar
  44. Locht C.: Molecular aspects ofBordetella pertussis pathogenesis.Internat.Microbiol. 2, 137–144 (1999).Google Scholar
  45. Loridan C., Alouf J.E.: Purification of RNA-core induced streptolysin S, and isolation and hemolytic characterization of the carrier-free toxin.J.Gen.Microbiol. 132, 305–307 (1986).Google Scholar
  46. Ludwig A., Goebel W.: The family of the multigene encoded RTX toxins, pp. 330–338 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  47. Lund T., de Buyser M.L., Granum P.E.: A new cytotoxin fromBacillus cereus that may cause necrotic enteritis.Mol.Microbiol. 38, 254–261 (2000).PubMedCrossRefGoogle Scholar
  48. Lysons R.J., Kent K.A., Bland A.P., Sellwood R., Robinson W.F., Frost A.J.: A cytotoxic hemolysin fromTreponema hyodysenteriae, a probable virulence determinant in swine dysentery.J.Med.Microbiol. 34, 97–102 (1991).PubMedGoogle Scholar
  49. Marchlewicz B.A., Duncan J.: Properties of a hemolysin produced by group B streptococci.Infect.Immun. 30, 805–813 (1980).PubMedGoogle Scholar
  50. Mayer M.M.: Mechanism of cytolysis by complement.Proc.Nat.Acad.Sci.USA 69, 2954–2958 (1972).PubMedCrossRefGoogle Scholar
  51. Menestrina G., Vécsey-Semjén B.: Biophysical methods and model membranes for the study of bacterial pore-forming toxins, pp. 287–309 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  52. Menestrina G., Mackman N., Holland I.B., Bhakdi S.:Escherichia coli hemolysin forms voltage-dependent ion channels in membranes.Biochim.Biophys.Acta 905, 109–117 (1987).PubMedCrossRefGoogle Scholar
  53. Menestrina G., Dalla Serra M., Pederzolli C., Bregante M., Gambale F.: Bacterial hemolysins and leucotoxins affect target cells by forming large exogenous pores into their plasma membrane:Escherichia coli hemolysin A a case example.Biosci.Rep. 15, 543–551 (1995).PubMedCrossRefGoogle Scholar
  54. Menestrina G., Dalla-Serra M., Prevost G.: Mode of action of β-barrel toxins of the staphylococcal γ-hemolysin family.Toxicon 39, 1661–1672 (2001).PubMedCrossRefGoogle Scholar
  55. Morgan P.J., Andrew P.W., Mitchell T.J.: Thiol-activated cytolysins.Rev.Med.Microbiol. 7, 221–229 (1996).Google Scholar
  56. Muir S., Koopman M.B.H., Libby S.J., Joens L.A., Heffron F., Kusters J.H.: Cloning and expression of aSerpula (Treponema)hyodysenteriae hemolysin gene.Infect.Immun. 60, 529–535 (1992).PubMedGoogle Scholar
  57. Nizet V., Beall B., Bast D.B., Vivekananda D., Kilburn L., Low D.E., de Azavedo J.C.S.: Genetic locus for streptolysin S production by group A streptococcus.Infect.Immun. 68, 4245–4254 (2000).PubMedCrossRefGoogle Scholar
  58. Olson R., Nariya H., Yokota K., Kamio Y., Gouaux E.: Crystal structure of staphyloccal LukF delineates conformational changes accompanying formation of a transmembrane channel.Nature Struct.Biol. 6, 134–140 (1999).PubMedCrossRefGoogle Scholar
  59. Parker M.W., Buckley J.T., Postma J.P., Tucker A.D., Leonard K., Pattus F., Tsernoglou D.: Structure of theAeromonas toxin proaerolysin in its water-soluble and membrane-channel tates.Nature 367, 292–295 (1994).PubMedCrossRefGoogle Scholar
  60. Pedelacq J.D., Maveyraud L., Prevost G., Baba-Loussa L., Gonzalez A., Courcelle E., Shepard W., Monteil H., Samama J.P., Mourey L.: The structure of aStaphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins.Structure 7, 277–287 (1999).PubMedCrossRefGoogle Scholar
  61. Prévost G.: The bi-component staphylococcal leucocidins and γ-hemolysins (toxins), pp. 402–418 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  62. Prévost G., Mourey L., Colin D.A., Menestrina G.: Staphylococcal pore-forming toxins, pp. 53–83 in F.G. van der Goot (Ed.):Pore-Forming Toxins. Springer-Verlag, Berlin (Germany) 2001.Google Scholar
  63. Rossjohn J., Feil S.C., McKinstry W.J., Tweten R.K., Parker M.W.: Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form.Cell 89, 685–692 (1997).PubMedCrossRefGoogle Scholar
  64. Salyers A., Whitt D.D.:Bacterial Pathogenesis: a Molecular Approach, 2nd ed. American Society for Microbiology Press, Washington (DC) 2002.Google Scholar
  65. Šebo P., Ladant A.: Repeat sequences in theBordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-terminal secretion signals by theEscherichia coli α-hemolysin translocator.Mol.Microbiol. 9, 999–1009 (1993).PubMedCrossRefGoogle Scholar
  66. Šebo P., Glaser P., Sakamoto H., Ullmann A.: High-level synthesis of active adenylate cyclase toxin ofBordetella pertussis in a reconstructedEscherichia coli system.Gene 104, 19–24 (1991).PubMedCrossRefGoogle Scholar
  67. Sekiya K., Satoh R., Danbara H., Futaesaku Y.: Electron microscopic evaluation of a two-step theory of pore-formation by streptolysin O.J.Bacteriol. 178, 6998–7002 (1996).PubMedGoogle Scholar
  68. Sellman B.R., Kagan B.L., Tweten R.K.: Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation byClostridium septicum α-toxin.Mol.Microbiol. 23, 551–558 (1997).PubMedCrossRefGoogle Scholar
  69. Shatursky O., Heuck A.P., Shepard L.A., Rossjohn J., Parker M.W., Johnson A.E., Tweten R.K.: The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins.Cell 99, 293–299 (1999).PubMedCrossRefGoogle Scholar
  70. Shinoda S.: Hemolysins ofVibrio cholerae and otherVibrio species, pp. 373–385 in J.E. Alouf, J.H. Freer (Eds):The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, London 1999.Google Scholar
  71. Song L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E.: Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore.Science 274, 1859–1866 (1996).PubMedCrossRefGoogle Scholar
  72. Staali L., Monteil H., Colin D.A.: The staphylococcal pore-forming lenkotoxins open Ca2+ channels in the membrane of human polymorphonuclear neutrophils.J.Membr.Biol. 162, 209–216 (1998).PubMedCrossRefGoogle Scholar
  73. Steiner K., Malke H.: Dual control of streptokinase and streptolysin S production by thecovRS andfasCAX two-component regulators inStreptococcus dysgalactiae subsp,equisimilis.Infect.Immun. 70, 3627–3636 (2002).PubMedCrossRefGoogle Scholar
  74. Sugawara N., Tomita T., Kamio Y.: Assembly ofStaphylococcus aureus γ-hemolysin into a pore-forming ring-shaped complex on the surface of human erythrocytes.FEBS Lett. 410, 333–337 (1997).PubMedCrossRefGoogle Scholar
  75. Tweten R., Parker M., Johnson A.E.: The cholesterol-dependent cytolysins, pp. 15–33 in F.G. van der Goot (Ed.):Pore-forming Toxins. Springer-Verlag, Berlin (Germany) 2001.Google Scholar
  76. Valeva A., Palmer M., Bhakdi S.: Staphylococcal α-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages.Biochemistry 36, 13298–13304 (1997).PubMedCrossRefGoogle Scholar
  77. Vandana S., Raje. M, Krishnasastry M.V.: The role of the amino terminus in the kinetics and assembly ofα-hemolysin ofStaphylococcus aureus.J.Biol.Chem. 272, 24858–24863 (1997).PubMedCrossRefGoogle Scholar
  78. Welch R.A.: RTX structure and function: a story of numerous anomalies and few analogies in toxin biology, pp. 85–111 in F.G. van der Goot (Ed.):Pore-forming Toxins. Springer-Verlag, Berlin (Germany) 2001.Google Scholar
  79. Woltjes J., Legdeur-Velthuis H., de Graaf J.: Detection and characterization of hemolysin production inStreptococcus mutans.Infect.Immun. 31, 850–855 (1981).PubMedGoogle Scholar
  80. Zitzer A., Palmer M., Weller U., Wassenaar T., Biermann C., Tranum-Jensen J., Bhakdi S.: Mode of primary binding of target membranes and pore formation induced byVibrio cytolysin (hemolysin).Eur.J.Biochem. 247, 209–216 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  1. 1.Institut PasteurParisFrance

Personalised recommendations