Advertisement

Development of noninvasive measurement of peripheral circulation and its medical application

  • Hideki Nakamura
Review
  • 40 Downloads

Abstract

Surveys were carried out on tissue blood flow measurement based on the thermal diffusion method and on the assessment of peripheral circulatory function using photosensors.

Regarding the thermal diffusion method, first noninvasive measurement using a Peltier stack was carried out. Then, measurements using a thermal clearance curve at various temperatures were performed.

For noninvasive measurement of the mechanical properties of peripheral arteries using photosensors, the author determined the vascular volume ratio and/or the relative vascular volume.

For clinical application in field studies, it is necessary to develop an apparatus with which absolute evaluation of the intravascular volume can be carried out using the blood volume around the unit volume as an indicator. Therefore, an apparatus that removes a signal constituent from tissue other than the blood using two-wavelength photosensors is required.

If a noninvasive method to accurately measure the intravascular volume is established, changes in the mechanical properties of the peripheral arteries that correspond to functional and organic changes in the normal response can be observed more directly. Moreover, quantitative assessment of peripheral circulatory function will become possible, and diagnosis of the severity of peripheral circulatory disorders will be facilitated.

Key words

Noninvasive measurement Tissue blood flow Thermal diffusion method Photosensor Mechanical properties of peripheral arteries 

References

  1. 1).
    Okada A. Pathogenic mechanism of vibration-induced white finger (VWF)-Recent findings and speculation. In: Okada A, Taylor W, Dupuis H, editors. Hand-Arm Vibration. Kanazawa: Kyoei Co., Ltd, 1990: 225–8.Google Scholar
  2. 2).
    Okada A, Nakamura H. Some features of peripheral circulatory and nervous functions in workers using with hand-held vibratory tools. Proceedings of the International Conference on Hand-Arm Vibration 1993; 81–92.Google Scholar
  3. 3).
    Geiger SR. Handbook of Physiology Section 2, Vol. 3. Am J Physiol Soc 1983; 285.Google Scholar
  4. 4).
    Glogovac SV, Bitz DM, Whiteside LA. Hydrogen washout technique in monitoring vascular status after re-plantation surgery. J Hand Surg 1982;7: 601–5.Google Scholar
  5. 5).
    Ogata K, Whiteside LA. Effects of external compression on blood flow to muscle and skin. Clin Orthop 1982;168: 105–7.PubMedGoogle Scholar
  6. 6).
    Sejrson P. Blood flow in cutaneous tissue in man studied by washout of radioactive xenon. Circ Res 1969;25: 215–99.Google Scholar
  7. 7).
    Chimoskey JE. Skin blood flow by133Xe disappearance validated by venous occlusion plethysmography. J Appl Physiol 1972;32: 432–5.PubMedGoogle Scholar
  8. 8).
    Jelnes R. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours. Studies using the 133-xenon wash-out technique continuously over 24 hours. Dan Med Bull 1988;35: 303–15.PubMedGoogle Scholar
  9. 9).
    Ito H, Tanaka S, Shimada T, Isogai Y, Mori Y, Kawakami K. Skin peripheral perfusion pressure (SPPP) in the leg using a technique of133Xe clearance method. Kaku Igaku 1990;27: 1141–5.PubMedGoogle Scholar
  10. 10).
    McCullagh PJ, McAllister HG, McCaffrey PM, Fox JS, Taggart AJ, Riddell JG. Computer-assisted measurement of peripheral blood flow. J Med Eng Technol 1988;12: 7–14.PubMedCrossRefGoogle Scholar
  11. 11).
    Almond NE, Jones DP, Cooke ED. Noninvasive measurement of the human peripheral circulation: Relationship between laser Doppler flowmeter and photoplethysmograph signals from the finger. Angiology 1988;39:819–29.PubMedCrossRefGoogle Scholar
  12. 12).
    Oishi M, Nishida H, Kabe K, Hoshi J. Monitoring neonatal peripheral circulation by electrocardiogram-to-oximeter pulse velocity. Pediatr Res 1993;33: 653–7.PubMedCrossRefGoogle Scholar
  13. 13).
    Kristensen JK, Engelhart M, Nielsen T. Laser Doppler measurement of digital blood flow regulation in normals and in patients with Raynaud’s phenomenon. Acta Dermatovener 1983;63: 43–7.Google Scholar
  14. 14).
    Lukkari Rautiarinen E, Lepantalo M, Pietila J. Reproducibility of skin blood flow, perfusion pressure and oxygen tension measurements in advanced lower limb ischaemia. Eur J Vasc Surg 1989;3: 345–50.CrossRefGoogle Scholar
  15. 15).
    Larsson SE, Cai H, Zhang Q, Larsson R, Oberg PA. Measurement by laser Doppler flowmetry of microcirculation in lower leg muscle at different blood fluxes in relation to electromyographically determined contraction and accumulated fatigue. Eur J Appl Physiol 1995;70: 288–93.CrossRefGoogle Scholar
  16. 16).
    Linzell BJ. Internal calorimetry in the measurement of blood flow with heated thermocouples. J Physiol 1953;121: 390–402.PubMedGoogle Scholar
  17. 17).
    Betz E, Ingvar DH, Lassen NA, Schmahl FW. Regional blood flow in the cerebral cortex, measured simultaneously by heat and inert gas clearance. Acta Physiol Scand 1966;67: 1–9.PubMedGoogle Scholar
  18. 18).
    Takemae T, Ohhigashi Y, Miyashita T, Kobayashi S, Suto M. Measurement of cerebral blood flow with a newly developed temperature-controlled thermoelectrical method: Fundamental studies and a comparative study with hydrogen clearance method. Shinsyu Med J 1984;32: 334–9.Google Scholar
  19. 19).
    Brawley BW. The pathophysiology of intracerebral steal following carbon dioxide inhalation, an experimental study. Scand J Clin Lab Invest 1968;22(102 suppl): 13B.Google Scholar
  20. 20).
    Carter LP, Erspamer R. Dynamic quantitative assessment of cortical blood flow. Neurol Res 1980;2: 127–36.PubMedGoogle Scholar
  21. 21).
    Carter LP, Erspamer R, Bro WJ. Cortical blood flow:Thermal diffusion vs isotope clearance. Stroke 1981;12: 513–8.PubMedGoogle Scholar
  22. 22).
    Koshu K, Hirota S, Sonobe M, Takahashi S, Takaku A, Saito T, et al. Continuous recording of cerebral blood flow by means of a thermal diffusion method using a Peltier stack. Neurosurgery 1987;21: 693–8.PubMedCrossRefGoogle Scholar
  23. 23).
    Yamagata S, Kikuchi H, Karasawa J, Ihara I, Nagata I, Naruo Y, et al. Monitor system for local cerebral blood flow. Experimental study of CBF measurement by thermal diffusion using a flow probe with a Peltier stack. Neurol Med Chir (Tokyo) 1986;26: 195–200.CrossRefGoogle Scholar
  24. 24).
    Yoshiya I, Shimada Y, Tanaka K. Spectrophotometric monitoring of arterial oxygen saturation in the fingertip. Med Biol Eng Comput 1980;18: 27–32.PubMedCrossRefGoogle Scholar
  25. 25).
    Hay WW Jr, Thilo E, Curlander JB. Pulse oximetry in neonatal medicine. Clin Perinatol 1991;18: 441–72.PubMedGoogle Scholar
  26. 26).
    Yamakoshi K, Shimazu H, Shibata M, Kamiya A. A new oscillometric method for indirect measurement of systolic and mean arterial blood pressure in the human finger. Part 1: Model experiment. Med Biol Eng Comput 1982;20: 307–13.PubMedCrossRefGoogle Scholar
  27. 27).
    Yamakoshi K, Shimazu H, Shibata M, Kamiya A. New oscillometric method for indirect measurement of systolic and mean arterial blood pressure in the human finger. Part 2: Correlation study. Med Biol Eng Comput 1982;20: 314–8.PubMedCrossRefGoogle Scholar
  28. 28).
    Kurki TS, Piirainen HI, Kurki PT. Non-invasive monitoring of finger arterial pressure in patients with Raynaud’s phenomenon: Effects of exposure to cold. Br J Anaesth 1990;65: 558–63.PubMedCrossRefGoogle Scholar
  29. 29).
    Kurki T, Smith NT, Head N, Dec Silver H, Quinn A. Noninvasive continuous blood pressure measurement from the finger: Optimal measurement conditions and factors affecting reliability. J Clin Monit 1987;3: 6–13PubMedGoogle Scholar
  30. 30).
    Bos WJ, Imholz BP, Van Goudoever J, Wesseling KH, van Montfrans GA. The reliability of noninvasive continuous finger blood pressure measurement in patients with both hypertension and vascular disease. Am J Hypertens 1992;5: 529–35PubMedGoogle Scholar
  31. 31).
    Takahashi H, Yoshimura M, Nishimura M, Inui S, Yamada C. Measurement of digital arterial pressure in patients with essential hypertension. Jpn Circ J 1990;54: 221–30PubMedGoogle Scholar
  32. 32).
    Ftatsuka M, Miyakita T, Miura H. An experimental study on changes in finger blood pressure during chain-saw operation. Ind Health 199634; 93–100.CrossRefGoogle Scholar
  33. 33).
    Kawarada A, Shimazu H, Yamakoshi K, Kamiya A. Noninvasive measurement of the elastic property of the arterial wall using photoelectric plethysmography. Kokyu to Junkan 1984;32: 151–6 (in Japanese).PubMedGoogle Scholar
  34. 34).
    Ando J, Kawarada A, Shibata M, Yamakoshi K, Kamiya A, Takamura I, et al. Clinical evaluation of photo-plethysmographic measurement of viscoelastic property in human digital arteries. Kokyu to Junkan 1986;34: 321–5 (in Japanese with English abstract).PubMedGoogle Scholar
  35. 35).
    Ando J, Kawarada A, Shibata M, Yamakoshi K, Kamiya A. Pressure-volume relationships of finger arteries in healthy subjects and patients with coronary atherosclerosis measured non-invasively by photoelectric plethysmography. Jpn Circ J 1991;55: 567–75.PubMedGoogle Scholar
  36. 36).
    Nakamura H, Nohara S, Okada A. Measuring apparatus for the peripheral circulatory function using a photosensor. Byoutaiseiri 1990;9: 201–5 (in Japanese).Google Scholar
  37. 37).
    Nielsen SL, Olsen N. Measurement of digital blood pressure after local cooling. J Appl Physiol 1977;43: 907–10.PubMedGoogle Scholar
  38. 38).
    Nielsen SL. Raynaud’s phenomenon and finger systolic pressure during cooling. Sand J Clin Invest 1978;38: 765–79.CrossRefGoogle Scholar
  39. 39).
    Olsen N, Nielsen SL, Voss P. Cold response of digital arteries in chain saw operator. Br J Ind Med 1981;38: 82–8.Google Scholar
  40. 40).
    Ekenvall L, Lindbald L. Vibration white finger and digital systolic pressure during cooling. Br J Ind Med 1986;43: 280–3.PubMedGoogle Scholar
  41. 41).
    Pyykko I, Kolari P, Farkkila M, Starck J, Korhonen O, Jantti V. Finger peripheral resistance during local cold provocation in vasospastic disease. Scand J Work Environ Health 1986;12: 395–9.PubMedGoogle Scholar
  42. 42).
    Kurozawa Y, Nasu Y. Assessment of vibration-induced white finger by strain-gauge plethysmography. In: Okada A, Taylor W, Dupuis H, editors. Hand-Arm Vibration. Kanazawa: Kyoei Co., Ltd, 1990: 187–9.Google Scholar
  43. 43).
    Sakai A, Saito T, Azuma K, Yanagaidaira Y, Asano K. Measurement of regional tissue hemoglobin oxygen saturation in humans using optical spectroscopy. Jpn J Med Instrument 1994;64: 264–9.Google Scholar
  44. 44).
    Narita N, Tominaga T, Koshu K, Mizoi K, Yoshimoto T. Monitoring of brain tissue haemoglobin concentration and oxygen saturation using a three wavelength spectrophotometric method. Neurol Res 1994;16: 428–32.PubMedGoogle Scholar
  45. 45).
    Hoshi Y, Tamura M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci Lett 1993;150: 5–8.PubMedCrossRefGoogle Scholar
  46. 46).
    Hoshi Y, Tamura M. Dynamic multichannel near-infrared optical imaging of human brain activity. J Appl Physiol 1993;75: 1842–6.PubMedGoogle Scholar
  47. 47).
    Chance B, Nioka S, Kent J, MuCully K, Fountain M, Greenfeld R, Holtom G. Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem 1988;174: 698–707.PubMedCrossRefGoogle Scholar
  48. 48).
    McCully KK, Iotti S, Kendrik K, Wang Z, Posner DJ, Leigh J Jr, et al. Simultaneous in vivo measurements of HbO2 and saturation and PCr kinetics after exercise in normal humans. J Appl Physiol 1994;77: 5–10.PubMedGoogle Scholar
  49. 49).
    Aukland K, et al. Measurement of local blood flow with hydrogen gas. Circ Res 1964;14: 164–87.PubMedGoogle Scholar
  50. 50).
    Nohara S, Nakamura H, Okada A. Measurement of skin blood flow using inhaled hydrogen gas clearance method. Kokyu to Junkan 1986;34: 771–6.PubMedGoogle Scholar
  51. 51).
    Nakamura H. Development of a system for monitoring the body surface circulation and its application:part 1 fundamental study. Jpn J Hyg 1987;41: 896–913 (in Japanese with English abstract).Google Scholar
  52. 52).
    Nakamura H, Katoh A, Nohara S, Nakamura H, Okada A. Experimental studies on the pathogenesis of the gastric mucosal lesions induced by whole-body vibration. Environ Res 1992;58: 220–9.PubMedCrossRefGoogle Scholar
  53. 53).
    Nakamura H, Okazawa T, Nagase H, Yoshida M, Ohnishi T, Hayashi K, et al. Circulatory disturbances in the development of gastric mucosal lesions of rats exposed to noise and vibration. Arch Complex Environ Studies (in press).Google Scholar
  54. 54).
    Grayson J. Internal calorimetry in the determination of thermal conductivity and blood flow. J Physiol 1952;118: 54–72.PubMedGoogle Scholar
  55. 55).
    Nakamura H, Nohara S, Okada A. Measurement of skin blood flow using the electrode with a Peltier stack. Kokyu to Junkan 1986;34: 777–82.PubMedGoogle Scholar
  56. 56).
    Nakamura H. Development of a system for monitoring the body surface circulation and its application:part 2 diagnostic application. Jpn J Hyg 1987;42: 648–57 (in Japanese with an English abstract).Google Scholar
  57. 57).
    Nakamura H, Nohara S, Nakamura H, Okada A. Combined effects of local vibration and noise on peripheral the circulatory function. In: Okada A, Manninen O, editors. Recent advances in research on the combined effects of environmental factors. Kanazawa:Kyoei Co Ltd, 1987: 762–81.Google Scholar
  58. 58).
    Nakamura H, Nohara S, Nakamura H, Okada A. Peripheral circulatory responses to sustained handgrip in workers using vibratory tools. Jpn J Hyg 1990;45: 700–7 (in Japanese with English abstract).Google Scholar
  59. 59).
    Nakamura H, Nohara S, Nakamura H, Okada A. Measurement of the tissue blood flow using a thermal clearance curve. Jpn J Med Instrument 1989;59: 515–20.Google Scholar
  60. 60).
    Nohara S, Kuriyama N, Nakamura H, Nakamura H, Okada A. Measuring apparatus for skin blood flow using the thermal clearance curve. In: Okada A, Taylor W, Dupuis H, editors. Hand-Arm Vibration. Kanazawa:Kyoei Co Ltd, 1990: 201–5.Google Scholar
  61. 61).
    Delhomme G, Newman WH, Roussel B, Jouvet M, Bowman HF, Dittmar A. Thermal diffusion probe and instrument system for tissue blood flow measurements: Validation in phantoms and in vivo organs. IEEE Trans Biomed Eng 1994;41: 656–62PubMedCrossRefGoogle Scholar
  62. 62).
    Tsuchiya K, Sanaka T, Nitta K, Ando A, Sugino N. Effects of atrial natriuretic peptide on regional renal blood flow measured by a thermal diffusion technique. Jpn J Exp Med 1989;59: 27–35.PubMedGoogle Scholar
  63. 63).
    Carter LP, Grahm T, Bailes JE, Bichard W, Spetzler RF. Continuous postoperative monitoring of cortical blood flow and intracranial pressure. Surg Neurol 1991;35: 36–9.PubMedCrossRefGoogle Scholar
  64. 64).
    Carter LP. Surface monitoring of cerebral cortical blood flow. Cerebrovasc Brain Metab Rev 1991;3: 246–61.PubMedGoogle Scholar
  65. 65).
    Brinker T, Seifert V, Dietz H. Cerebral blood flow and intracranial pressure during experimental subarachnoid haemorrhage. Acta Neurochir Wien 1992;115: 47–52.PubMedCrossRefGoogle Scholar
  66. 66).
    Carter LP, Graham T, Zabramski JM, Dickman CA, Lopez LJ, Tallman DH, et al. Postoperative monitoring of cerebral blood flow in patients harboring intracranial aneurysms. Neurol Res 1990;12: 214–8.PubMedGoogle Scholar
  67. 67).
    Ohmoto T, Nagao S, Mino S, Fujiwara T, Honma Y, Ito T, et al. Monitoring of cortical blood flow during temporary arterial occlusion in aneurysm surgery by the thermal diffusion method. Neurosurgery 1991;28: 49–54.PubMedCrossRefGoogle Scholar
  68. 68).
    Dickman CA, Carter LP, Baldwin HZ, Harrington T, Tallman D. Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma. Neurosurgery 1991 ;28: 467–72.PubMedCrossRefGoogle Scholar
  69. 69).
    Carter LP, Weinand ME, Oommen KJ. Cerebral blood flow (CBF) monitoring in intensive care by thermal diffusion. Acta Neurochir Suppl Wien 1993;59: 43–6.PubMedGoogle Scholar
  70. 70).
    Schroder ML, Muizelaar JP. Monitoring of regional cerebral blood flow (CBF) in acute head injury by thermal diffusion. Acta Neurochir Suppl Wien 1993;59: 47–9.PubMedGoogle Scholar
  71. 71).
    Viale GL, Cossu M, Celia F, Balestrero M, Rossi A, Masoni D. Cortical blood flow recorded during early or delayed surgery for ruptured intracranial aneurysms. Acta Neurochir Wien 1994;131: 1–5.PubMedCrossRefGoogle Scholar
  72. 72).
    Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery 1995;36: 943–9.PubMedCrossRefGoogle Scholar
  73. 73).
    Miyakita T, Miura H, Futatsuka M. Hand-arm vibration, noise, temperature and static load -an experimental study of peripheral circulation while operating chain-saws-. Kurume Med J 1990;37 Suppl: s73-s83.PubMedGoogle Scholar
  74. 74).
    Furuta M, Sakakibara H, Miyao M, Kondo T, Yamada S. Effect of vibration frequency on finger blood flow. Int Arch Occup Environ Health 1991;63: 221–4.PubMedCrossRefGoogle Scholar
  75. 75).
    Posey JA, Geddes LA, William BS, Moore AG. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure. Cardiovasc Res Center Bull 1969;8: 15–25.Google Scholar
  76. 76).
    Mauck GW, Smith CR, Geddes LA, Bourland JD. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure, -part ii. J Biomech Eng 1980;102: 28–32.PubMedCrossRefGoogle Scholar
  77. 77).
    Muramatsu J (translator). Circulatory Physiology. In: Smith JJ, Kampine JP, edotors. Tokyo:Igaku Shoin Ltd, 1983: 13 (in Japanese).Google Scholar
  78. 78).
    Yamakoshi K, Kawarada A, Kamiya A, Shimazu H, Ito H. Long-term ambulatory monitoring of indirect arterial blood pressure using the volume-oscillometric method. Med Biol Eng Comput 1985;23: 459–65.PubMedCrossRefGoogle Scholar
  79. 79).
    Herscovici H, Roller DN. Noninvasive determination of central blood pressure by impedance plethysmography. IEEE Trans Biomed Eng 1986; BME33: 617–25.CrossRefGoogle Scholar
  80. 80).
    Nakamura H, Nakamura H, Nagase H, Miyoshi T. Assessment of the mechanical properties of peripheral arteries in chain saw operators using a photosensor. Ind Health 1996;34: 93–100.CrossRefGoogle Scholar
  81. 81).
    Shimazu H, Yamakoshi K, Kamiya A. Noninvasive measurement of the volume-elastic modules in finger arteries using photoelectric plethysmography. IEEE TRANS Biomed Eng 1986; BME33: 795–8.CrossRefGoogle Scholar
  82. 82).
    Kawarada A, Shimazu H, Yamakoshi K, Kamiya A. Noninvasive automatic measurement of arterial elasticity in human fingers and rabbit forelegs using photoelectric plethysmography. Med Biol Eng Comput 1986;24: 591–6.PubMedCrossRefGoogle Scholar
  83. 83).
    Yamakoshi K, Kamiya A. Noninvasive measurement of arterial blood pressure and the elastic property using the photo-electric plethysmography technique. Med Progr Technol 1987;12: 123–43.Google Scholar
  84. 84).
    Cohen RH, Coffman JD. β-adrenergic vasodilative mechanism in the finger. Circ Res 1981;49: 1196–201.PubMedGoogle Scholar
  85. 85).
    Freedman RR, Sabhawal SC, Ianni P, et al. Nonneural beta-adrenergic vasodilating mechanism in temperature biofeedback. Psychosomat Med 1988;50:394–401.Google Scholar
  86. 86).
    Nazzaci G, Pesciullesi E, Lucarelli F, et al. Arterio-venous anastomoses. Function and raynaud’s phenomenon. Angiology 1988;39: 812–8.CrossRefGoogle Scholar
  87. 87).
    Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory perameters. Science 1977;198: 1264–7.PubMedCrossRefGoogle Scholar
  88. 88).
    Wilson BC, Patterson MS, Flock ST, Moulton JD. The optical absorption and scattering property of tissues in the visible and nearinfrated wavelength range. Light Biol Med 1988;1: 45–52.Google Scholar
  89. 89).
    Goldman L. Biomedical laser technology: A challenge to the engineer. Bio Med Eng 1971;6: 22–4.Google Scholar
  90. 90).
    Jerry G, Ghesquiere S, Maarek JM, Fraysse F, Debray S, Hung M, et al. Imaging mammalian tissue and organs using laser collimated transillumination. J Biomed Eng 1984;6: 70–4.CrossRefGoogle Scholar
  91. 91).
    Key H, Jackson PC, Wells PTN. New approaches to transillumination imaging. J Biomed Eng 1988;10: 113–8.PubMedCrossRefGoogle Scholar
  92. 92).
    Dowle CS, Caseldine J, Tew J, Manhire AR, Roebuck EJ, Blarney RW. An evaluation of transmission spectroscopy (lightscanning) in the diagnosis of symptomatic breast lesions. Clin Radiol 1987;38: 375–7.PubMedCrossRefGoogle Scholar
  93. 93).
    Geslien, GE, Fisher JR, DeLaney C. Transillumination in breast cancer detection:Screening failure and potential. Am J Roentgenol 1985;144: 619–22.Google Scholar
  94. 94).
    Nilsson G. Imaging of tissue blood flow by coherent light scattering. Proc Annual Int Conf of IEEE/EMBS 1989; 391-2.Google Scholar
  95. 95).
    Togawa T, Saito H. Non-contact imaging of thermal properties of skin. Physiol Meas 1994;15: 291–8.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Hygiene 1997

Authors and Affiliations

  • Hideki Nakamura
    • 1
  1. 1.Department of Public Health, School of MedicineThe University of TokushimaTokushima

Personalised recommendations