Skip to main content
Log in

Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium,Lactobacillus sp. RKY2

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davison, B. E., R. L. Llanos, M. R. Cancilla, N. C. Redman, and A. J. Hillier (1995) Current research on the genetics of lactic acid production in lactic acid bacteria.Int. Dairy J. 5: 763–784.

    Article  Google Scholar 

  2. Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives.FEMS Microbiol. Rev. 16: 221–231.

    Article  CAS  Google Scholar 

  3. Richter, K. and C. Berthold (1998) Biotechnological conversion of sugar and starch crops into lactic acid.J. Agric. Eng. Res. 71: 181–191.

    Article  Google Scholar 

  4. Yang, Y. J., S. H. Hwang, S. M. Lee, Y. J. Kim, and Y. M. Koo (2002) Continuous cultivation ofLactobacillus rhamnosus with cell recycleing using an acoustic cell settler.Biotechnol. Bioprocess Eng. 7: 357–361.

    Article  CAS  Google Scholar 

  5. Varadarajan, S. and D. J. Miller (1999) Catalytic upgrading of fermentation-derived organic acids.Biotechnol. Prog. 15: 845–854.

    Article  CAS  Google Scholar 

  6. Amass, W., A. Amass, and B. Tighe (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradation studies.Polym. Int. 47: 89–114.

    Article  CAS  Google Scholar 

  7. Vink, E. T. H., K. R. Rábago, D. A. Glassner, and P.R. Gruber (2003) Applications of life cycle assessment to NatureWorksTM polylactides (PLA) production.Polym. Degrad. Stabil. 80: 403–419.

    Article  CAS  Google Scholar 

  8. Litchfield, J. H. (1996) Microbiological production of lactic acid.Adv. appl. Microbiol. 42: 45–95.

    Article  CAS  Google Scholar 

  9. Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement ofRhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants.Biochem. Eng. J. 18: 41–48.

    Article  CAS  Google Scholar 

  10. Miura, S., L. Dwiarti, T. Arimura, M. Hoshino, L. Tiejun, and M. Okabe (2004) Enhanced production ofl-lactic acid by ammonia-tolerant mutant strainRhizopus sp. MK-96-1196.J. Biosci. Bioeng. 97: 19–23.

    CAS  Google Scholar 

  11. Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically purel(+)-lactic acid from various carbohydrates by batch fermentation ofEnterococcus faecalis RKY1.Enzyme Microb. Technol. 33: 416–423.

    Article  CAS  Google Scholar 

  12. Hofvendahl, K. and B. Hahn-Hägerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources.Enzyme Microb. Technol. 26: 87–107.

    Article  CAS  Google Scholar 

  13. Stiles, M. E. and W. H. Holzapfel (1997) Lactic acid bacteria of foods and their current taxonomy.Int. J Food Microbiol. 36: 1–29.

    Article  CAS  Google Scholar 

  14. Berry, A. R., C. M. M. Franco W. Zhang and A. P. J. Middelberg (1999) Growth and lactic acid production in batch culture ofLactobacillus rhamnosus in a defined medium.Biotechnol. Lett. 21: 163–167.

    Article  CAS  Google Scholar 

  15. Butos, G., A. B. Moldes, J. L. Alonso, and M. Vázquez (2004) Optimization ofd-lactic acid production byLactobacillus coryniformis using response surface methodology.Food Microbiol. 21: 143–148.

    Article  CAS  Google Scholar 

  16. Hofvendahl, K., E. W. J. van Niel, and B. Hahn-Hägerdal (1999) Effect of temperature and pH on growth and product formation ofLactobacillus lactis ssp.lactis ATCC 19435 growing on maltose.Appl. Microbiol. Biotechnol. 51: 669–672.

    Article  CAS  Google Scholar 

  17. Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid.Biotechnol. Bioprocess Eng. 9: 303–308.

    Article  CAS  Google Scholar 

  18. Lee, J. H., M. H. Choi, J. Y. Park, H. K. Kang, H. W. Ryu, C. S. Sunwo, Y. J. Wee, K. D. Park, D. W. Kim, and D. Kim (2004) Cloning and characterization of the lactate dehydrogenase genes fromLactobacillus sp. RKY2.Biotechnol. Bioprocess Eng. 9: 318–322.

    Article  CAS  Google Scholar 

  19. deMan, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of lactobacilli.J. Appl. Bacteriol. 23: 130–135.

    Google Scholar 

  20. Stainer, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter (1986)The Microbial World. 5th ed., pp. 495–504. Prentice Hall, NY, USA.

    Google Scholar 

  21. Angelis, M. D. and M. Gobbetti (1999)Lactobacillus sanfranciscensis CB1: Manganese, oxygen, superoxide dismutase and metabolism.Appl. Microbiol. Biotechnol. 51: 358–363.

    Article  Google Scholar 

  22. Bruno-Bárcena, J. M., A. L. Ragout, P. R. Córdoba, and F. Siñeriz (1999) Continuous production ofl(+)-lactic acid byLactobacillus casei in two-stage systems.Appl. Microbiol. Biotechnol. 51: 316–324.

    Article  Google Scholar 

  23. Åkerberg, C., K.Hofvendahl, G. Zacchi, and B. Hahn-Hägerdal (1998) Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production byLactococcus lactis ssp.lactis ATCC 19435 in whole-wheat flour.Appl. Microbiol. Biotechnol. 49: 682–690.

    Article  Google Scholar 

  24. Ohara, H., K. Hiyama, and T. Yoshida (1992) Noncompetitive product inhibition in lactic acid fermentation from glucose.Appl. Microbiol. Biotechnol. 36: 773–776.

    Article  CAS  Google Scholar 

  25. Hujanen, M., S. Linko, Y. Y. Linko, and M. Leisola (2001) Optimization of media and cultivation conditions forl(+)(S)-lactic acid production byLactobacillus casei NRRL B-441.Appl. Microbiol. Biotechnol. 56: 126–130.

    Article  CAS  Google Scholar 

  26. Hujanen, M. and Y. Y. Linko (1999) Effect of temperature and various nitrogen sources onl(+)-lactic acid production byLactobacillus casei.Appl. Microbiol Biotechnol. 45: 307–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Won Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wee, YJ., Kim, JN., Yun, JS. et al. Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium,Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 10, 23–28 (2005). https://doi.org/10.1007/BF02931178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931178

Keywords

Navigation