Advertisement

Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium,Lactobacillus sp. RKY2

  • Young-Jung Wee
  • Jin-Nam Kim
  • Jong-Sun Yun
  • Hwa-Won Ryu
Article

Abstract

Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.

Keywords

batch fermentation culture conditions homofermentation lactic acid Lactobacillus 

References

  1. [1]
    Davison, B. E., R. L. Llanos, M. R. Cancilla, N. C. Redman, and A. J. Hillier (1995) Current research on the genetics of lactic acid production in lactic acid bacteria.Int. Dairy J. 5: 763–784.CrossRefGoogle Scholar
  2. [2]
    Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives.FEMS Microbiol. Rev. 16: 221–231.CrossRefGoogle Scholar
  3. [3]
    Richter, K. and C. Berthold (1998) Biotechnological conversion of sugar and starch crops into lactic acid.J. Agric. Eng. Res. 71: 181–191.CrossRefGoogle Scholar
  4. [4]
    Yang, Y. J., S. H. Hwang, S. M. Lee, Y. J. Kim, and Y. M. Koo (2002) Continuous cultivation ofLactobacillus rhamnosus with cell recycleing using an acoustic cell settler.Biotechnol. Bioprocess Eng. 7: 357–361.CrossRefGoogle Scholar
  5. [5]
    Varadarajan, S. and D. J. Miller (1999) Catalytic upgrading of fermentation-derived organic acids.Biotechnol. Prog. 15: 845–854.CrossRefGoogle Scholar
  6. [6]
    Amass, W., A. Amass, and B. Tighe (1998) A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polymers, blends of biodegradable polymers and recent advances in biodegradation studies.Polym. Int. 47: 89–114.CrossRefGoogle Scholar
  7. [7]
    Vink, E. T. H., K. R. Rábago, D. A. Glassner, and P.R. Gruber (2003) Applications of life cycle assessment to NatureWorksTM polylactides (PLA) production.Polym. Degrad. Stabil. 80: 403–419.CrossRefGoogle Scholar
  8. [8]
    Litchfield, J. H. (1996) Microbiological production of lactic acid.Adv. appl. Microbiol. 42: 45–95.CrossRefGoogle Scholar
  9. [9]
    Bai, D. M., X. M. Zhao, X. G. Li, and S. M. Xu (2004) Strain improvement ofRhizopus oryzae for over-production of L(+)-lactic acid and metabolic flux analysis of mutants.Biochem. Eng. J. 18: 41–48.CrossRefGoogle Scholar
  10. [10]
    Miura, S., L. Dwiarti, T. Arimura, M. Hoshino, L. Tiejun, and M. Okabe (2004) Enhanced production ofl-lactic acid by ammonia-tolerant mutant strainRhizopus sp. MK-96-1196.J. Biosci. Bioeng. 97: 19–23.Google Scholar
  11. [11]
    Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically purel(+)-lactic acid from various carbohydrates by batch fermentation ofEnterococcus faecalis RKY1.Enzyme Microb. Technol. 33: 416–423.CrossRefGoogle Scholar
  12. [12]
    Hofvendahl, K. and B. Hahn-Hägerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources.Enzyme Microb. Technol. 26: 87–107.CrossRefGoogle Scholar
  13. [13]
    Stiles, M. E. and W. H. Holzapfel (1997) Lactic acid bacteria of foods and their current taxonomy.Int. J Food Microbiol. 36: 1–29.CrossRefGoogle Scholar
  14. [14]
    Berry, A. R., C. M. M. Franco W. Zhang and A. P. J. Middelberg (1999) Growth and lactic acid production in batch culture ofLactobacillus rhamnosus in a defined medium.Biotechnol. Lett. 21: 163–167.CrossRefGoogle Scholar
  15. [15]
    Butos, G., A. B. Moldes, J. L. Alonso, and M. Vázquez (2004) Optimization ofd-lactic acid production byLactobacillus coryniformis using response surface methodology.Food Microbiol. 21: 143–148.CrossRefGoogle Scholar
  16. [16]
    Hofvendahl, K., E. W. J. van Niel, and B. Hahn-Hägerdal (1999) Effect of temperature and pH on growth and product formation ofLactobacillus lactis ssp.lactis ATCC 19435 growing on maltose.Appl. Microbiol. Biotechnol. 51: 669–672.CrossRefGoogle Scholar
  17. [17]
    Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004) Isolation and characterization of a novel lactic acid bacterium for the production of lactic acid.Biotechnol. Bioprocess Eng. 9: 303–308.CrossRefGoogle Scholar
  18. [18]
    Lee, J. H., M. H. Choi, J. Y. Park, H. K. Kang, H. W. Ryu, C. S. Sunwo, Y. J. Wee, K. D. Park, D. W. Kim, and D. Kim (2004) Cloning and characterization of the lactate dehydrogenase genes fromLactobacillus sp. RKY2.Biotechnol. Bioprocess Eng. 9: 318–322.CrossRefGoogle Scholar
  19. [19]
    deMan, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of lactobacilli.J. Appl. Bacteriol. 23: 130–135.Google Scholar
  20. [20]
    Stainer, R. Y., J. L. Ingraham, M. L. Wheelis, and P. R. Painter (1986)The Microbial World. 5th ed., pp. 495–504. Prentice Hall, NY, USA.Google Scholar
  21. [21]
    Angelis, M. D. and M. Gobbetti (1999)Lactobacillus sanfranciscensis CB1: Manganese, oxygen, superoxide dismutase and metabolism.Appl. Microbiol. Biotechnol. 51: 358–363.CrossRefGoogle Scholar
  22. [22]
    Bruno-Bárcena, J. M., A. L. Ragout, P. R. Córdoba, and F. Siñeriz (1999) Continuous production ofl(+)-lactic acid byLactobacillus casei in two-stage systems.Appl. Microbiol. Biotechnol. 51: 316–324.CrossRefGoogle Scholar
  23. [23]
    Åkerberg, C., K.Hofvendahl, G. Zacchi, and B. Hahn-Hägerdal (1998) Modeling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production byLactococcus lactis ssp.lactis ATCC 19435 in whole-wheat flour.Appl. Microbiol. Biotechnol. 49: 682–690.CrossRefGoogle Scholar
  24. [24]
    Ohara, H., K. Hiyama, and T. Yoshida (1992) Noncompetitive product inhibition in lactic acid fermentation from glucose.Appl. Microbiol. Biotechnol. 36: 773–776.CrossRefGoogle Scholar
  25. [25]
    Hujanen, M., S. Linko, Y. Y. Linko, and M. Leisola (2001) Optimization of media and cultivation conditions forl(+)(S)-lactic acid production byLactobacillus casei NRRL B-441.Appl. Microbiol. Biotechnol. 56: 126–130.CrossRefGoogle Scholar
  26. [26]
    Hujanen, M. and Y. Y. Linko (1999) Effect of temperature and various nitrogen sources onl(+)-lactic acid production byLactobacillus casei.Appl. Microbiol Biotechnol. 45: 307–313.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2005

Authors and Affiliations

  • Young-Jung Wee
    • 1
  • Jin-Nam Kim
    • 2
  • Jong-Sun Yun
    • 3
  • Hwa-Won Ryu
    • 1
  1. 1.School of Biological Sciences and TechnologyChonnam National UniversityGwangjuKorea
  2. 2.Department of Material Chemical and Biochemical EngineeringChonnam National UniversityGwangjuKorea
  3. 3.BioHelixBiotechnology Industrialization CenterJeonnamKorea

Personalised recommendations