Optimization of abiotic factors for improved growth and extracellular production of recombinant fungal phytase in sesame hairy root cultures

  • Jae-An Chun
  • Woo-Hyup Lee
  • Mi-Ok Han
  • Jin-Woo Lee
  • Young-Byung Yi
  • Gun-Yong Park
  • Chung-Han Chung


The effects of various abiotic factors, including polyethylene glycol (PEG), silver nitrate (AgNO3) and potassium phosphate (KH2PO4) on biomass growth, extracellular production of recombinant fungal phytase and its transcription activity by realtime RT-PCR were examined with transformed sesame hairy roots. The PEG treatments decreased both biomass growth (80.5≈82.3%) and phytase production (82.1≈96.4%) at all concentrations tested, except 1.0 g/L PEG, which increased biomass growth to 112.4% of that of the control. The AgNO3 treatments also resulted in reduced biomass growth (77≈92%) and phytase production (84.4≈96.3%) at all concentrations applied except 1.5 mg/L AgNO3, at which biomass was increased to 109.6% of that of untreated roots. The potassium phosphate treatments increased biomass growth, production of recombinant fungal phytase and its transcription until a concentration of 340 mg/L was attained, and at 510 mg/L a rapid decrease was observed in all of the aforementioned parameters. Combined treatments of PEG (1 g/L) and AgNO3 (1.5 mg/L) exhibited both positive and negative influences on biomass growth and production and transcription of the recombinant fungal phytase when medium containing 170 and 340 mg/L of potassium phosphate were used, respectively. The addition of PEG alone to culture medium containing potassium phosphate at both of the aforementioned concentrations decreased biomass while increasing production and transcription of recombinant fungal phytase. Conversely, the addition of AgNO3 alone to culture medium increased biomass but decreased production and transcription of fungal phytase. Throughout these experiments, the most effective treatment for enhanced biomass growth, and enhanced production and transcription of recombinant fungal phytase was attained when the 1 g/L PEG and 1.5 mg/L AgNO3 were combined in medium containing 340 mg/L potassium phosphate.


abiotic factors polyethylene glycol potassium phosphate silver nitrate fungal phytase sesame hairy roots realtime RT-PCR shake flask cultures 


  1. 1.
    Andersen, D. C. and L. Krummen (2002) Recombinant protein expression for therapeutical applications.Curr. Opin. Biotechnol. 13: 117–123.CrossRefGoogle Scholar
  2. 2.
    Ma, J. K.-C., P. M. W. Drake, and P. Christou (2003) The production of recombinant pharmaceutical proteins in plants.Nat. Rev. Genet. 4: 794–805.CrossRefGoogle Scholar
  3. 3.
    Jin, U.-H., J.-A. Chun, J.-W. Lee, Y.-B. Yi S.-W. Lee, and C.-H. Chung (2004) Expression and characterization of extracellular fungal phytase in transformed sesame hairy root cultures.Protein Expr. Purif. 37: 486–492.CrossRefGoogle Scholar
  4. 4.
    Shi, H.-P. and P. Lindemann (2006) Expression of recombinantDigitalis lanata EHRH. cardenolide 16′-O-glucohydrolase inCucumis sativa L. hairy roots.Plant Cell Rep. 25: 1193–1198.CrossRefGoogle Scholar
  5. 5.
    Jin, U.-H., J.-A. Chun, M.-O. Han, J.-W. Lee, Y.-B. Yi, S.-W. Lee, and C.-H. Chung (2005) Sesame hairy root cultures for extra-cellular production of a recombinant fungal phytase.Process Biochem. 40: 3754–3762.CrossRefGoogle Scholar
  6. 6.
    Guillon, S., J. Tremouillaux-Guiller, P. K. Pati, M. Rideau, and P. Gantet (2006) Harnessing the potential of hairy roots: dawn of a new era.Trends Biotechnol. 24: 403–409.CrossRefGoogle Scholar
  7. 7.
    Jeong, G.-T., and D.-H. Park (2005) Comparative evaluation of modified bioreactors for enhancement of growth and secondary metabolite biosynthesis usingPanax ginseng hairy roots.Biotechnol. Bioprocess Eng. 10: 528–534.CrossRefGoogle Scholar
  8. 8.
    Giri, A. and M. L. Narasu (2000) Transgenic hairy roots: recent trends and applications.Biotechnol. Adv. 18: 1–22.CrossRefGoogle Scholar
  9. 9.
    Pen, J., T. C. Verwoerd, P. A. van Paridon, R. F. Beudeker, P. J. M. van den Elzen, K. Geerse, J. D. van der Klis, H. A. J. Versteegh, A. J. J. van Ooyen, and A. Hoekema (1993) Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization.Bio/Technology 11: 811–814.CrossRefGoogle Scholar
  10. 10.
    Golovan, S. P., M. A. Hayes, J. P. Phillips, and C. W. Forsberg (2001) Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control.Nat. Biotechnol. 19: 429–433.CrossRefGoogle Scholar
  11. 11.
    Wodzinski, R. J. and A. H. J. Ullah (1996) Phytase.Adv. Appl. Microbiol. 42: 263–302.CrossRefGoogle Scholar
  12. 12.
    Van Hartingsveldt, W., C. M. J. van Zeijl, G. M. Harteveld, R. J. Gouka, M. E. G. Suykerbuyk, R. G. M. Luiten, P. A. van Paridon, G. C. M. Selten, A. E. Veenstra, R. F. M. van Gorcom, and C. A. M. J. J. van den Hondel (1993) Cloning, characterization and overexpression of the phytase-encoding gene (phyA) ofAspergillus niger.Gene 127: 87–94.CrossRefGoogle Scholar
  13. 13.
    Liu, B.-L., A. Rafig, Y.-M. Tzeng, and A. Rob (1998) The induction and characterization of phytase and beyond.Enzyme Microb. Technol. 22: 415–424.CrossRefGoogle Scholar
  14. 14.
    Baur, A., F. Kaufmann, H. Rolli, A. Weise, R. Luethje, B. Berg, M. Braun, W. Bacumer, M. Kietzmann, R. Reski, and G. Gorr (2005) A fast and flexible PEG-mediated transient expression system in plants for high level expression of secreted recombinant proteins.J. Biotechnol. 119: 332–342.CrossRefGoogle Scholar
  15. 15.
    Zhao, J., L. C. Davis, and R. Verpoorte (2005) Elicitor signal transduction leading to production of plant secondary metabolites.Biotechnol. Adv. 23: 283–333.CrossRefGoogle Scholar
  16. 16.
    Furze, J. M., M. J. C. Rhodes, A. J. Parr, R. J. Robins, I. M. Whitehead, and D. R. Threlfall (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures ofDatura stramonium.Plant Cell Rep. 10: 111–114.CrossRefGoogle Scholar
  17. 17.
    Pitta-Alvarez, S. I., T. C. Spollansky, and A. M. Giulietti (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures ofBrugmansia candida.Enzyme Microb Technol. 26: 252–258.CrossRefGoogle Scholar
  18. 18.
    Kim, Y. H., J. H. Kim, and Y. J. Yoo (1997) Enhanced secretion of peroxidase from carrot hairy roots using polyethylene glycol.J. Ferment. Bioeng. 83: 397–400.CrossRefGoogle Scholar
  19. 19.
    Zhang, C.-H., J.-Y. Wu, and G.-Y. He (2002) Effects of inoculum size and age on biomass growth and paclotaxel production of elicitor-treatedTaxus yunnanensis cell cultures.Appl. Microbiol. Biotechnol. 60: 396–402.CrossRefGoogle Scholar
  20. 20.
    Yari Khosroushahi, A., M. Valizadeh, A. Ghasempour, M. Khosrowshahli, H. Naghdibadi, M. R. Dadpour, and Y. Omidi (2006) Improved Taxol production by combination of inducing factors in suspension cell culture ofTaxus baccata.Cell Biol. Int. 30: 262–269.CrossRefGoogle Scholar
  21. 21.
    Han, Y. W. and D. J. Gallagher (1987) Phosphatase production byAspergillus ficuum.J. Ind. Microbiol. Biotechnol. 1: 295–301.Google Scholar
  22. 22.
    Han, Y. W., D. J. Gallagher, and A. G. Wilfred (1987) Phytase production byAspergillus ficuum on semisolid substrate.J. Ind. Microbiol. Biotechnol. 2: 195–200.Google Scholar
  23. 23.
    Al-Asheh, S. and Z. Duvnjak (1995) The effect of phosphate concentration on phytase production and the reduction of phytic acid content in canola meal byAspergillus carbonarius during a solid-state fermentation process.Appl. Microbiol. Biotechnol. 43: 25–30.CrossRefGoogle Scholar
  24. 24.
    Murashige, T. and F. Skoog (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures.Physiol. Plant. 15: 473–497.CrossRefGoogle Scholar
  25. 25.
    Chun, J.-A., J.-Y. Seo, M.-O. Han, J.-W. Lee, Y.-B. Yi, G.-Y. Park, S.-W. Lee, S.-C. Bae, K.-J. Cho, and C.-H. Chung (2006) Comparative expression and characterization of dehydroascorbate reductase cDNA from transformed sesame hairy roots using real-time RT-PCR.J. Plant Biol. 49: 507–512.CrossRefGoogle Scholar
  26. 26.
    Vadgama, R. (2005) Surface biocompatibility.Royal Soc. Chem. Ann. Rep. Sect. C 101: 14–52.CrossRefGoogle Scholar
  27. 27.
    Stasolla, C., L. van Zyl U. Egertsdotter, D. Craig, W. Liu, and R. R. Sederoff (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos.Plant Physiol. 131: 49–60.CrossRefGoogle Scholar
  28. 28.
    Oliveria, L. A., B. B. Neto, A. L. F. Porto, and E. B. Tambourgi (2004) Extractive cultivation of xylanase byPenicillium janthinellum in a poly(ethylene glycol)/cashewnut tree gum aqueous two-phase system.Biotechnol. Prog. 20: 1880–1884.CrossRefGoogle Scholar
  29. 29.
    Naik, S. K. and P. K. Chand (2003) Silver nitrate and aminethoxyvinylglycine promotein vitro adventitious shoot regeneration of pomegranate (Punica granatum L.).J. Plant Physiol. 160: 423–430.CrossRefGoogle Scholar
  30. 30.
    Zhang, C.-H., and J.-Y. Wu (2003) Ethylene inhibitors enhance elicitor-induced paclotaxel production in suspension cultures ofTaxus spp. cells.Enzyme Microb. Technol. 32: 71–77.CrossRefGoogle Scholar
  31. 31.
    Tang, W., X. Luo, and V. Samuels (2004) Regulated gene expression with promoters responding to inducers.Plant Sci. 166: 827–834.CrossRefGoogle Scholar
  32. 32.
    Franklin, C. I. and R. A. Dixon (1994) Initiation and maintenance of callus and cell suspension cultures. pp. 1–25. In: R. A. Dixon and R. A. Gonzales (eds.).Plant Cell Culture, IRL Press, New York, NY, USA.Google Scholar
  33. 33.
    Mudge, S. R., F. W. Smith, and A. E. Richardson (2003) Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enablesArabidopsis to grow on phytate as a sole P source.Plant Sci. 165: 871–878.CrossRefGoogle Scholar
  34. 34.
    Kochian, L. V. (2000) Molecular physiology of mineral nutrient acquisition, transport, and utilization. pp. 1204–1249. In: B. B. Buchanan, W. Gruissem, and R. I. Jones (eds.).Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists. Rockville, MD, USA.Google Scholar
  35. 35.
    Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems.J. Mol. Endocrinol., 29: 23–39.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  • Jae-An Chun
    • 1
  • Woo-Hyup Lee
    • 1
  • Mi-Ok Han
    • 1
  • Jin-Woo Lee
    • 1
  • Young-Byung Yi
    • 2
  • Gun-Yong Park
    • 3
  • Chung-Han Chung
    • 1
  1. 1.Department of BiotechnologyDong-A UniversityBusanKorea
  2. 2.Department of Environmental BiotechnologyDong-A UniversityBusanKorea
  3. 3.National Agricultural Products Quality Management ServiceBusanKorea

Personalised recommendations