Biotechnology and Bioprocess Engineering

, Volume 12, Issue 6, pp 713–719 | Cite as

Production and physicochemical characterization of β-glucan produced byPaenibacillus polymyxa JB115

  • Hee-Kyoung Jung
  • Joo-Heon Hong
  • Seung-Chun Park
  • Byung-Kwon Park
  • Doo-Hyun Nam
  • Sang-Dal Kim


This study was conducted to develop a bacterial glucan as an animal feed additive. A novel glucan-producing bacterium.Paenibacillus polymyxa JB115, was isolated from Korean soil. The glucan, JB115-BG, produced byP. polymyxa JB115, was confirmed by TLC to be composed of glucose only. By examining FT-IR,1H NMR, and13C NMR spectra, it was proven that JB115-BG has a β-(1→3)- and β-(1→6)-linked glucan structure. The particle size of JB115-BG was distributed in the range of 4–800 μm, with a mean value of 149.1 μm, and its molecular distribution ranged from 6.9∼3,103.7 kDa. It was also observed that 80% of the purified JB115-BG had a molecular distribution above 100 kDa. The obtained results suggest that the glucan JB115-BG can be used as an animal feed additive for the purpose of enhancing immunity.


β-D-glucan exopolysaccharide polysaccharide structure Paenibacillus polymyxa feed additive 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahn, S. G., H. H. Suh, C. H. Lee, S. H. Moon, H. S. Kim, K. H. Ahn, G. S. Kwon, H. M. Oh, and B. D. Yoon (1998) Isolation and characterization of a novel polysaccharide producingBacillus polymyxa A49 KCTC-4648P.J. Microbiol. Biotechnol. 8: 171–177.Google Scholar
  2. 2.
    Moon, S. H., J. M. Park, H. Y. Chun, and S. J. Kim (2006) Comparisons of physical properties of bacterial cellulose produced in different culture conditions using saccharified food wastes.Biotechnol. Bioprocess Eng. 11: 26–31.CrossRefGoogle Scholar
  3. 3.
    Zanchetta, P., N. Lagarde, and J. Guezennec (2003) A new bone-healing material: A hyaluronic acid-like bacterial exopoly saccharide.Calcif. Tissue Int. 72: 74–79.CrossRefGoogle Scholar
  4. 4.
    Mansel, P. W. A. (1994) Polysaccharides in skin care,Cosmet. Toilet. 109: 67–72.Google Scholar
  5. 5.
    Chu, K. H. and E. Y. Kim (2006) Predictive modeling of competitive biosorption equilibrium data.Biotechnol. Bioprocess Eng. 11: 67–71.CrossRefGoogle Scholar
  6. 6.
    Shi, F., Z. Xu, and P. Cen (2006) Optimization of γ-polyglutamic acid production byBacillus subtilis ZJU-7 using a surface-response methodology.Biotechnol. Bioprocess Eng. 11: 251–257.CrossRefGoogle Scholar
  7. 7.
    Kumar, A. S., K. Mody, and B. Jha (2007) Bacterial exopolysaccharides—a perception.J. Basic Microbiol. 47: 103–117.CrossRefGoogle Scholar
  8. 8.
    Shoda, M. and Y. Sugano (2005) Recent advances in bacterial cellulose production.Biotechnol. Bioprocess Eng. 10: 1–8.CrossRefGoogle Scholar
  9. 9.
    Arena, A., T. L. Maugeri, B. Pavone, D. Iannello, C. Gugliandolo, and G. Bisignano (2006) Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerantBacillus licheniformis.Int. Immunopharmacol. 6: 8–13.CrossRefGoogle Scholar
  10. 10.
    Kawagishi, H., T. Kanao, R. Inagaki, T. Mizuno, K. Shimura, H. Ito, T. Hagiwara, and T. Nakamura (1990) Formolysis of a potent antitumor (1→6) β-d-glucanprotein complex fromAgaricus blazei fruiting bodies and antitumor activity of the resulting products.Carbohydr. Polym. 12: 393–403.CrossRefGoogle Scholar
  11. 11.
    Liu, C., Q. Lin, Y. Gao, L. Ye, Y. Xing, and T. Xi (2007) Characterization and antitumor activity of a polysaccharide fromStrongylocentrotus nudus eggs.Carbohydr. Polym. 67: 313–318.CrossRefGoogle Scholar
  12. 12.
    Moradali, M. F., H. Mostafavi, S. Ghods, and G. A. Hedjaroude (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi.Int. Immunopharmacol. 7: 701–724.CrossRefGoogle Scholar
  13. 13.
    Park, J. H., M. S. Kang, H. I. Kim, B. H. Chung, K. H. Lee, and W. K. Moon (2003) Study on immune-stimulating activity of β-glucan isolated from the cell wall of yeast mutantSaccharomyces cerevisiae IS2.Kor. J. Food Sci. Technol. 35: 488–492.Google Scholar
  14. 14.
    Seo, H. P., J. M. Kim, H. D. Shin, T. K. Kim, H. J. Chang, B. R. Park, and J. W. Lee (2002) Production of β-1,3/1,6 glucan byAureobasidium pollulans SM-2001.Kor. J. Biotechnol. Bioeng. 17: 376–380.Google Scholar
  15. 15.
    Tao, Y., L. Zhang, and P. Cheung (2006) Physicochemical properties and antitumor activities of water soluble native and sulfated hyperbranched mushroom polysaccharides.Carbohydr. Res. 341: 2261–2269.CrossRefGoogle Scholar
  16. 16.
    Kumari, J. and P. K. Sahoo (2006) Non-specific immune response of healthy and immunocompromised Asia catfish (Clarias batrachus) to several immunostimulants.Aquaculture 255: 133–141.CrossRefGoogle Scholar
  17. 17.
    Suphantharika, M., P. Khunrae, P. Thanardkit, and C. Verduyn (2003) Preparation of spent brewer's yeast β-glucans with a potential application as an immunostimulant for black tiger shrimp,Penaeus monodom.Bioresour. Technol. 88: 55–60.CrossRefGoogle Scholar
  18. 18.
    Flickinger, E. A. and G. C. Fahey, Jr. (2002) Pet food and feed applications of inulin, oligofructose and other oligosaccharides.Br. J. Nutr. 87: S297-S300.CrossRefGoogle Scholar
  19. 19.
    Verdonk, J. M., S. B. Shim, P. van Leeuwen, and M. W. Verstegen (2005) Application of inulin-type fructans in animal feed and pet food.Br. J. Nutr. 93: S125-S138.CrossRefGoogle Scholar
  20. 20.
    Kim, M. K., I. Y. Lee, J. H. Ko, Y. H. Rhee, and Y. H. Park (1999) Higher intracellular levels of uridine monophosphate under nitrogen-limited conditions enhance the metabolic flux of curdlan synthesis inAgrobacterium species.Biotechnol. Bioeng. 62: 317–323.CrossRefGoogle Scholar
  21. 21.
    Gummadi, S. N. and K. Kumar (2005) Production of extracellular water insoluble β-1.3-glucan (curdlan) fromBacillus sp. SNC07.Biotechnol. Bioprocess Eng. 10: 546–551.CrossRefGoogle Scholar
  22. 22.
    Nakanishi, I., K. Kimura, T. Suzuki, M. Ishikawa, I. Banno, T. Sakane, and T. Harada (1976) Demonstration of curdlan-type polysaccharide and some other β-1.3-glucan in microorganisms with aniline blue.J. Gen. Appl. Microbiol. 22: 1–11.CrossRefGoogle Scholar
  23. 23.
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances.Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  24. 24.
    Harada, T., A. Misaki, and H. Saito (1968) Curdlan: a bacterial gel-forming β-(1,3) glucan.Arch. Biochem. Biophys. 124: 292–298.CrossRefGoogle Scholar
  25. 25.
    Harada, T., M. Masada, K. Fujimori, and I. Maeda (1966) Production of a firm, resilient gel-forming polysaccharide by a mutant ofAlealigenes faecalis var.myxogenes I0C3.Agric. Biol. Chem. 30: 196–198.Google Scholar
  26. 26.
    He, Z., D. Kisla, L. Zhang, C. Yuan, K. B. Green-Church, and A. E. Yousef (2007) Isolation and identification of aPaenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin.Appl. Environ. Microbiol. 73: 168–78.CrossRefGoogle Scholar
  27. 27.
    Xu, F., Z. C. Geng, J. X. Sun, C. F. Liu, J. L. Ren, R. C. Sun, P. Fowler, and M. S. Baird (2006) Fractional and structural characterization of hemicelluloses from perennial ryegrass (Lolium perenne) and cocksfoot grass (Dactylis glonerata).Carbohydr. Res. 341: 2073–2082.CrossRefGoogle Scholar
  28. 28.
    Sandula, J., G. Kogan, M. Kacurakova, and E. Machova (1999) Microbial (1→3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity.Cabohydr. Polym. 38: 247–253.CrossRefGoogle Scholar
  29. 29.
    Gonzaga, M. L. C., N. M. P. S. Ricardo, F. Heatley, and S. de A. Soares (2005) Isolation and characterization of polysaccharides fromAgaricus blazei Murill.Carbohydr. Polym. 60: 43–49.CrossRefGoogle Scholar
  30. 30.
    Huang, Q., Y. Jin, L. Zhang, P. C. K. Cheung, and J. F. Kennedy (2007) Structure, molecular size and antitumor activities of polysaccharides fromPoria cocos mycelia produced in fermenter.Carbohydr. Polym. 70: 324–333.CrossRefGoogle Scholar
  31. 31.
    Sugawara, T., S. Takahashi, M. Osumi, and N. Ohno (2004) Refinement of the structures of cell-wall glucans ofSchizosacchharomyces pombe by chemical modification and NMR spectroscopy.Carbohydr. Res. 339: 2255–2265.CrossRefGoogle Scholar
  32. 32.
    Kimura, Y., M. Sumiyoshi, T. Suzuki, T. Suzuki, and M. Sakanaka (2007) Inhibitory effects of water-soluble low molecular-weight β-(1,3–1,6) D-glucan purified fromAureobasidium pullans GM-NH-IA1 strain on food allergic reactions in mice.Int. Immunopharmacol. 7: 963–972.CrossRefGoogle Scholar
  33. 33.
    Storseth, T. R., S. Kirkvold, J. Skjermo, and K. I. Reitan (2006) A branched β-D-(1→3, 1→6) glucan from the marine diatomChaetoceros debilis (Bacillariophyceae) characterized by NMR.Carbohydr. Res. 341: 2108–2114.CrossRefGoogle Scholar
  34. 34.
    Kim, Y. T., E. H. Kim, C. Cheong, D. L. Williams, C. W. Kim, and S. T. Lim. (2000) Structural characterization of β-D-(1→3, 1→6)-linked glucans using NMR spectroscopy.Carbohydr. Res. 328: 331–341.CrossRefGoogle Scholar
  35. 35.
    Silvestein, R. M., G. C. Bassler, and T. C. Morrill (1994)Spectrometric Identification of Organic Compounds. 5th ed. Wiley Interscience, NY, USA.Google Scholar
  36. 36.
    Altabe, S. G., N. Inon, D. de Mendoza, and R. A. Ugalde (1994) New osmoregulated β(1–3), β(1–6) glucosyltransferase(s) inAzospirillum brasilense.J. Bacteriol. 176: 4890–4898.Google Scholar
  37. 37.
    Ohno, N., M. Uchiyama, A. Tsuzuki, K. Tokunaka, N. N. Miura, Y. Adachi, M. W. Aizawa, H. Tamura, S. Tanaka, and T. Yadomae (1999) Solubilization of yeast cell-wall β-(1→3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction.Carbohydr. Res. 316: 161–172.CrossRefGoogle Scholar
  38. 38.
    Bohn, A. and J. N. BeMiller (1995) (1→3)-β-D-glucans as biological response modifiers: a review of structure-functional activity relationships.Carbohydr. Polym. 28: 3–14.CrossRefGoogle Scholar
  39. 39.
    Leung, M. Y. K., C. Liu, J. C. M. Koon, and K. P. Fung (2006) Polysaccharide biological response modifiers.Immunol. Lett. 105: 101–114.CrossRefGoogle Scholar
  40. 40.
    Krakowski, L., J. Krzyzanowski, Z. Wrona, and A. K. Siwicki (1999) The effect of nonspecific immunostimulation of pregnant mares with 1,3/1,6 glucan and levamisole on the immunoglobulins levels in colostrums, selected indices of nonspecific cellular and humoral immunity in foals in neonatal and postnatal period.Vet. Immunol. Immunopathol. 68: 1–11.CrossRefGoogle Scholar
  41. 41.
    Seviour, R. J., S. J. Stasinopoulos, D. P. F. Auer, and P. A. Gibbs (1992) Production of pullulan and other exopolysaccharides by filamentous fungi.Crit. Rev. Biotechnol. 12: 279–298.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  • Hee-Kyoung Jung
    • 1
    • 2
  • Joo-Heon Hong
    • 1
  • Seung-Chun Park
    • 3
  • Byung-Kwon Park
    • 4
  • Doo-Hyun Nam
    • 5
  • Sang-Dal Kim
    • 2
  1. 1.Bio Industry CenterDaegu New Technology AgencyDaeguKorea
  2. 2.Department of Applied Microbiology, College of Natural ResourcesYeungnam UniversityGyeongsanKorea
  3. 3.College of Veterinary MedicineKyungpook National UniversityDaeguKorea
  4. 4.JEONJINBIODaeguKorea
  5. 5.Department of PharmacyYeungnam UniversityGyeongsanKorea

Personalised recommendations