Phytate degradation by immobilizedSaccharomyces cerevisiae phytase in soybean-curd whey

  • Man-Jin In
  • Kyung-Hee Kim
  • Nam-Soon Oh


Saccharomyces cerevisiae CY phytase-producing cells were immobilized in calcium alginate beads and used for the degradation of phylate. The maximum activity and immobilization yield of the immobilized phytase reached 280 mU/g-bead and 43%, respectively. The optimal pH of the immobilized cell phytase was not different from that of the free cells. However, the optimum temperature for the immobilized phytase was 50°C, which was 10°C higher than that of the free cells; pH and thermal stability were enhanced as a consequence of immobilization. Using the immobilized phytase, phytate was degraded in a stirred tank bioreactor. Phytate degradation, both in a buffer solution and in soybean-curd whey mixture, showed very similar trends. At an enzyme dosage of 93.9 mU/g-phytate, half of the phytate was degraded after 1 h of hydrolysis. The operational stability of the immobilized beads was examined with repeated batchwise operations. Based on 50% conversion of the phytate and five times of reuse of the immobilized beads, the specific degradation (g phytate/g dry cell weight) for the immobilized phytase increased 170% compared to that of the free phytase.


phytate degradation immobilized phytase Saccharomyces cerevisiae 


  1. 1.
    Reddy, N. R., S. K. Sathe, and D. K. Salunkhe (1982) Phytates in legumes and cereals.Adv. Food Res. 28: 1–92.Google Scholar
  2. 2.
    Wodzinski, R. J. and A. H. J. Ullah (1996) Phytase.Adv. Appl. Microbiol. 42: 263–302.CrossRefGoogle Scholar
  3. 3.
    Martinez, C., G. Ros, M. J. Periago, G. Lopez, J. Ortuno, and F. Rincon (1996) Phytic acid in human nutrition.Food Sci. Technol. Int. 2: 201–209.CrossRefGoogle Scholar
  4. 4.
    Potter, S. M. (1995) Overview of proposed mechanisms for the hypocholesterolemic effect of soy.J. Nutr. 125: 606S-611S.Google Scholar
  5. 5.
    Shamsuddin, A. M. (1995) Inositol phosphates have novel anticancer function.J. Nutr. 125: 725S-732S.Google Scholar
  6. 6.
    Raboy, V. (2001) Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution.Trends Plant Sci. 6: 458–462.CrossRefGoogle Scholar
  7. 7.
    Pandey, A., G. Szakacs, C. R. Soccol, J. A. Rodriguez-Leon, and V. T. Soccol (2001) Production, purification and properties of microbial phytases.Bioresour. Technol. 77: 203–214.CrossRefGoogle Scholar
  8. 8.
    Ryu, S. and T. G. Park (1998) Thermal stabilization ofAspergillus phytase by L-arginine.Biotechnol. Bioprocess Eng. 3: 32–34.CrossRefGoogle Scholar
  9. 9.
    Gibson, D. M. and A. H. J. Ullah (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds.Arch. Biochem. Biophys. 260: 503–513.CrossRefGoogle Scholar
  10. 10.
    Simon, O. and F. Igbasan (2002)In vitro properties of phytase from various microbial origins.Int. J. Food Sci. Technol. 37: 813–822.CrossRefGoogle Scholar
  11. 11.
    Mo, A.-Y., S.-M. Park, Y.-S. Kim, M.-S. Yang, and D.-H. Kim (2005) Expression of fungal phytase on the cell surface ofSaccharomyces cerevisiae.Biotechnol. Bioprocess Eng. 10: 576–581.CrossRefGoogle Scholar
  12. 12.
    Seo, S.-W., M.-J. In, and N.-S. Oh (2005) Production and reaction properties of phytase bySaccharomyces cerevisiae CY strain.J. Kor. Soc. Appl. Biol. Chem. 48: 228–232.Google Scholar
  13. 13.
    Fraser, J. E. and G. F. Bickerstaff (1997) Entrapment in calcium alginate. pp. 61–66. In: G. F. Bickerstaff (ed.).Immobilization of Enzymes and Cells. Humana Press. Totowa, NJ, USA.Google Scholar
  14. 14.
    Fernandez-Lafuente, R., C. M. Rosell, V. Rodriguez, and J. M. Guisan (1995) Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents.Enzyme Microb. Technol. 17: 517–523.CrossRefGoogle Scholar
  15. 15.
    Quan, C. S., S. D. Fan, and Y. Ohta (2003) Immobilization ofCandida krusei cells producing phytase in alginate gel beads: an application of the preparation ofmyo-inositol phosphates.Appl. Microbiol. Biotechnol. 62: 41–47.CrossRefGoogle Scholar
  16. 16.
    Heinonen, J. K. and R. J. Lahti (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic phosphatase.Anal. Biochem. 113: 313–317.CrossRefGoogle Scholar
  17. 17.
    Latta, M. and M. Eskin (1980) A simple and rapid colorimetric method for phytate determination.J. Agric. Food Chem. 28: 1313–1315.CrossRefGoogle Scholar
  18. 18.
    Cheetham, P. S. J., K. W. Blunt, and C. Bucke (1979) Physical studies on cell immobilization using calcium alginate gels.Biotechnol. Bioeng. 21: 2155–2168.CrossRefGoogle Scholar
  19. 19.
    Greiner, R. and U. Konietzny (1996) Construction of a bioreactor to produce special breakdown products of phytate.J. Biotechnol. 48: 153–159.CrossRefGoogle Scholar
  20. 20.
    Liu, B. L., C. H. Jong, and Y. M. Tzeng (1999) Effect of immobilization on pH and thermal stability ofAspergillus ficuum phytase.Enzyme Microb. Technol. 25: 517–521.CrossRefGoogle Scholar
  21. 21.
    Ishiguro, T., T. Ono, K. Nakasato, C. Tsukamoto, and S. Shimada (2003) Rapid measurement of phytate in raw soymilk by mid-infrared spectroscopy.Biosci. Biotechnol. Biochem. 67: 752–757.CrossRefGoogle Scholar
  22. 22.
    Lee, D. H., J. M. Kim, H. Y. Shin, S. W. Kang, and S. W. Kim (2006) Biodiesel production using a mixture of immobilizedRhizopus oryzae andCandida rugosa lipases.Biotechnol. Bioprocess Eng. 11: 522–525.CrossRefGoogle Scholar
  23. 23.
    Arruda, L. M. O. and M. Vitolo (1999) Characterization of invertase entrapped into calcium alginate beads.Appl. Biochem. Biotechnol. 81: 23–33.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering 2007

Authors and Affiliations

  1. 1.Department of Human Nutrition and Food ScienceChungwoon UniversityHongseongKorea
  2. 2.Department of Food Science and TechnologyKongju National UniversityYesanKorea

Personalised recommendations