Skip to main content
Log in

Evolutionary relatedness between glycolytic enzymes most frequently occurring in genomes

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

More than 100 sequenced genomes were searched for genes coding for the enzymes involved in glycolysis in an effort to find the most frequently occurring ones. Triosephosphate isomerase (TIM), glyceraldehyde-3-phosphate dehydrogenase (GAPD), phosphoglycerate kinase (PGK) and enolase (ENOL) were found to be present in 90 investigated genomes all together. The final set consisted of 80 prokaryotic and 10 eukaryotic genomes. Of the 80 prokaryotic genomes, 73 were from Bacteria, 7 from Archaea. Two microbial genomes were also from Eucarya (yeasts). Eight genomes of nonmicrobial origin were included for comparison. The amino acid sequences of TIMs, GAPDs, PGKs and ENOLs were collected and aligned, and their individual as well as concatenated evolutionary trees were constructed and discussed. The trees clearly demonstrate a closer relatedness between Eucarya and Archaea (especially the concatenated tree) but they do not support the hypothesis that eukaryotic glycolytic enzymes should be closely related to their α-proteobacterial counterparts. Phylogenetic analyses further reveal that although the taxonomic groups (e.g., α-proteobacteria, γ-proteobacteria, firmicutes, actinobacteria,etc.) form their more or less compact clusters in the trees, the inter-clade relationships between the trees are not conserved at all. On the other hand, several examples of conservative relatedness separating some clades of the same taxonomic groups were observed,e.g., Buchnera along withWigglesworthia and the rest of γ-proteobacteria, or mycoplasmas and the rest of firmicutes. The results support the view that these glycolytic enzymes may have their own evolutionary history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonyuk S.V., Eady R.R., Strange R.W., Hasnain S.S.: The structure of glyceraldehyde-3-phosphate dehydrogenase fromAlcaligenes xylosoxidans at 1.7 Å resolution.Acta Crystallogr. D59, 835–842 (2003).

    CAS  Google Scholar 

  • Bairoch A., Apweiler R.: The Swiss Prot protein sequence database and its supplement TrEMBL, in 2000.Nucl.Acids Res. 28, 45–48 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Rapp B.A., Wheeler D.L.: GenBank.Nucl.Acids Res. 28, 15–18 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bernstein B.E., Williams D.M., Bressi J.C., Kuhn P., Gelb M.H., Blackburn G.M., Hol W.G.: A bisubstrate analog induces unexpected conformational changes in phosphoglycerate kinase fromTrypanosoma brucei.J.Mol.Biol. 279, 1137–1148 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Canback B., Andersson S.G., Kurland C.G.: The global phylogeny of glycolytic enzymes.Proc.Nat.Acad.Sci.USA 99, 6097–6102 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Cordwell S.J.: Microbial genomes and “missing enzymes”: redefining biochemical pathways.Arch.Microbiol. 172, 269–279 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Dandekar T., Schuster S., Snel B., Huynen M., Bork P.: Pathway alignment: application to the comparative analysis of glycolytic enzymes.Biochem.J. 343, 115–124 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H., Abola E.E., Stevens R.C.: Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites.Curr.Opin.Struct.Biol. 10, 719–730 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J.: Confidence limits on phylogenies: an approach using the bootstrap.Evolution 39, 783–791 (1985).

    Article  Google Scholar 

  • Figge R.M., Cerff R.: GAPDH gene diversity in spirochetes: a paradigm for genetic promiscuity.Mol.Biol.Evol. 18, 2240–2249 (2001).

    PubMed  CAS  Google Scholar 

  • Fleming T., Littlechild J.: Sequence and structural comparison of thermophilic phosphoglycerate kinases with a mesophilic equivalent.Comp.Biochem.Physiol. A118, 439–451 (1997).

    Article  Google Scholar 

  • Fothergill-Gilmore L.A.: The evolution of glycolytic pathway.Trends Biochem.Sci. 11, 47–51 (1986).

    Article  CAS  Google Scholar 

  • Fothergill-Gilmore L.A., Michels P.A.M.: Evolution of glycolysis.Progr.Biophys.Mol.Biol. 59, 105–235 (1993).

    Article  CAS  Google Scholar 

  • Galperin M.Y., Koonin E.V.: Functional genomics and enzyme evolution. Homologous and analogous enzymes encoded in microbial genomes.Genetica 106, 159–170 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Gebbia J.A., Backenson P.B., Coleman J.L., Anda P., Benach J.L.: Glycolytic enzyme operon ofBorrelia burgdorferi: characterization and evolutionary implications.Gene 188, 221–228 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gogarten J.P., Olendzenski L., Hilario E., Simon C., Holsinger K.E.: Dating the cenancester of organisms.Science 274, 1750–1751 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Hannaert V., Brinkmann H., Nowitzki U., Lef J.A., Albert M.A., Sensen C.W., Gaasterland T., Muller M., Michels P., Martin W.: Enolase fromTrypanosoma brucei, from the amitochondriate protistMastigamoeba balamuthi, and from the chloroplast and cytosol ofEuglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway.Mol.Biol.Evol. 17, 989–1000 (2000).

    PubMed  CAS  Google Scholar 

  • Henrissat B., Deleury E., Coutinho P.M.: Glycogen metabolism loss: a common marker of parasitic behavior in bacteria?Trends Genet. 18, 437–440 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Huynen M.A., Dandekar T., Bork P.: Variation and evolution of the citric-acid cycle: a genomic perspective.Trends Microbiol. 7, 281–291 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Isupov M.N., Fleming T.M., Dalby A.R., Crowhurst G.S., Bourne P.C., Littlechild J.A.: Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeonSulfolobus solfataricus.J.Mol.Biol. 291, 651–660 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Keeling P.J., Doolittle W.F.: Evidence that eukaryotic triosephosphate isomerase is of α-proteobacterial origin.Proc.Nat.Acad.Sci.USA 94, 1270–1275 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Klenk H.P., Clayton R.A., Tomb J.F., White O., Nelson K.E., Ketchum K.A., Dodson R.J., Gwinn M., Hickey E.K., Peterson J.D., Richardson D.L., Kerlavage A.R., Graham D.E., Kyrpides N.C., Fleischmann R.D., Quackenbush J., Lee N.H., Sutton G.G., Gill S., Kirkness E.F., Dougherty B.A., McKenney K., Adams M.D., Loftus B., Peterson S., Reich C.I., McNeil L.K., Badger J.H., Glodek A., Zhou L., Overbeek R., Gocayne J.D., Weidman J.F., McDonald L., Utterback T., Cotton M.D., Spriggs T., Artiach P., Kaine B.P., Sykes S.M., Sadow P.W., D’Andrea K.P., Bowman C., Fujii C., Garland S.A., Mason T.M., Olsen G.J., Fraser C.M., Smith H.O., Woese C.R., Venter J.C.: The complete genome sequence of the hyperthermophilic, sulfate-reducing archaeonArchaeoglobus fulgidus.Nature 390, 364–370 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kohlhoff M., Dahm A., Hensel R.: Tetrameric trioscphosphate isomerase from hyperthermophilic Archaea.FEBS Lett. 383, 245–250 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kováčová A., Janeček Š.: Evolutionary relationships of glycolytic (β/α)8-barrel enzymes present in completely sequenced genomes.Biologia (Bratislava) 57, 283–288 (2002).

    Google Scholar 

  • Lebioda L., Stec B., Brewer J.M.: The structure of yeast enolase at 2.25-Å resolution. An 8-fold β+α-barrel with a novel ββαα (βα)6 topology.J.Biol.Chem. 264, 3685–3693 (1989).

    PubMed  CAS  Google Scholar 

  • Lolis E., Alber T., Davenport R.C., Rose D., Hartman F.C., Petsko G.A.: Structure of yeast triosephosphate isomerase at 1.9-Å resolution.Biochemistry 29, 6609–6618 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Martin W., Müller M.: The hydrogen hypothesis for the first cukaryote.Nature 392, 37–41 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Muirhead H., Watson H.: Glycolytic enzymes: from hexose to pyruvate.Curr.Opin.Struct.Biol. 2, 870–876 (1992).

    Article  CAS  Google Scholar 

  • van der Oost J., Huynen M.A., Verhees C.H.: Molecular characterization of phosphoglycerate mutase in archaea.FEMS Microbiol.Lett. 212, 111–120 (2002).

    PubMed  Google Scholar 

  • Page R.D.: TreeView: an application to display phylogenetic trees on personal computers.Comput.Applic.Biosci. 12, 357–358 (1996).

    CAS  Google Scholar 

  • Pujadas G., Palau J.: TIM barrel fold: structural, functional and evolutionary characteristics in natural and designed molecules.Biologia (Bratislava) 54, 231–254 (1999).

    CAS  Google Scholar 

  • Ronimus R.S., Morgan H.W.: Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism.Archaea 1, 199–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Saiiou N., Nei M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol.Biol.Evol. 4, 406–425 (1987).

    Google Scholar 

  • Schmidt S., Sunyaev S., Bork P., Dandekar T.: Metabolites: a helping hand for pathway evolution?Trends Biochem.Sci. 28, 336–341 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Schuler G.D., Epstein J.A., Ohkawa H., Kans J.A.: Entrez: molecular biology database and retrieval system.Meth.Enzymol. 266, 141–162 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Skarzynski T., Moody P.C., Wonacott A.J.: Structure of holo-glyceraldehyde-3-phosphate dehydrogenase fromBocillus stearothermophilus at 1.8 Å resolution.J.Mol.Biol. 193, 171–187 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Stec B., Lebioda L.: Refined structure of yeast apo-enolase at 2.25 å resolution.J.Mol.Biol. 211, 235–248 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Thompson J.D., Higgins D.G., Gibson T.J.: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment trough sequence weighting, position specific gap penalties and weight matrix choice.Nucl.Acids Res. 22, 4673–4680 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Tomb J.F., White O., Kerlavage A.R., Clayton R.A., Sutton G.G., Fleischmann R.D., Ketchum K.A., Klenk H.P., Gill S., Dougherty B.A., Nelson K., Quackenbush J., Zhou L., Kirkness E.F., Peterson S., Loftus B., Richardson D., Dodson R., Khalak H.G., Glodek A., McKenney K., Fitzegerald L.M., Lee N., Adams M.D., Hickey F.K., Berg D.E., Gocayne J.D., Utterback T.R., Peterson J.D., Kelley J.M., Cotton M.D., Weidman J.M., Fujii C., Bowman C., Watthey L., Wallin E., Hayes W.S., Borodovsky M., Karp P.D., Smith H.O., Fraser C.M., Venter J.C.: The complete genome sequence of the gastric pathogenHelicobacter pylori.Nature 388, 539–547 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Velanker S.S., Ray S.S., Gokhale R.S., Suma S., Balaram H., Balaram P., Murthy M.R.N.: Triosephosphate isomerase fromPlasmodium falciparum: the crystal structure provides insights into antimalarial drug design.Structure 5, 751–761 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Verhees C.H., Kengen S.W.M., Tuininga J.E., Schut G.J., Adams M.W.W., de Vos W.M., Van der Oost J.: The unique features of glycolytic pathways in Archaea.Biochem.J. 375, 231–246 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Watson H.C., Walker N.P., Shaw P.J., Bryant T.N., Wendell P.L., Fothergill L.A., Perkins R.E., Conroy S.C., Dobson M.J., Tuite M.F., Kingsman A.J., Kingsman S.M.: Sequence and structure of yeast phosphoglycerate kinase.EMBO J. 1, 1635–1640 (1982).

    PubMed  CAS  Google Scholar 

  • Wedekind J.E., Poyner R.R., Reed G.H., Rayment I.: Chelation of serine-39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate, phosphonoacetohydroxamate, at 2.1 Å resolution.Biochemistry 33, 9333–9342 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Š. Janeček.

Additional information

This work was supported by the VEGA grant no. 2/2057/23 from theSlovak Grant Agency.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oslancová, A., Janeček, Š. Evolutionary relatedness between glycolytic enzymes most frequently occurring in genomes. Folia Microbiol 49, 247–258 (2004). https://doi.org/10.1007/BF02931039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931039

Keywords

Navigation