The Journal of Geometric Analysis

, Volume 13, Issue 1, pp 67–75 | Cite as

Semilinear elliptic problems and concentration compactness on non-compact Riemannian manifolds

  • K. H. Fieseler
  • K. Tintarev


Existence of solution for semilinear problem with the Laplace-Beltrami operator on non-compact Riemannian manifolds with rich symmetries is proved by concentration compactness based on actions of the manifold's isometry group.

Math Subject Classifications

58J05 35J20 

Key Words and Phrases

Laplace Beltrami operator semilinear equations critical points convergence concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bandle, C. and Benguria, R. The Brézis-Nirenberg problem onS 3 J. Diff. Eq.,178, 264–279, (2002).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Beckner, W. On the Grushin operator and hyperbolic symmetry.Proc. Am. Math. Soc.,129, 1233–1246, (2001).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Esteban, M.J. and Lions, P.-L. A compactness lemma.Nonlinear Anal.,7, 381–385, (1983).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Hebey E.Sobolev Space on Riemanian Manifolds, Lecture Notes in Mathematics,1365, Springer-Verlag, (1996).Google Scholar
  5. [5]
    Hebey, E. and Vaugon, M. Sobolev spaces in the presence of symmetry.J. Math. Pures Appl.,76, 859–881, (1997).MathSciNetGoogle Scholar
  6. [6]
    Kobayashi, S. Transformation groups in differential geometry,Ergebnisse der Matematik und ihren Grenzgebiete,70, (1992).Google Scholar
  7. [7]
    Li, P., Tam, L.F., and Yang, D. On the elliptic equationAu+Ku−KuP=0 on complete Riemannian manifolds and their geometric applications.Trans. Am. Math. Soc.,350, 1045–1078, (1998).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Lions, P.-L. The concentration compactness principle in the calculus of variation. The locally compact case, part 1,Ann. Inst, H. Poincaré, Analyse non lináaire,1, 109–1453, (1984).MATHGoogle Scholar
  9. [9]
    Lions, P.-L. Symétrie et compacité dans les espaces de Sonolev.J. Funct Anal.,49, 315–334, (1982).MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Schindler, I. and Tintarev, K. Semilinear elliptic problems on unbounded domains, inCalculus of Variations and Differential Equations, Ioffe, A., Reich, S., and Shafrir, I., Eds., Chapman & Hall/CRC.Research Notes in Mathematics,410, 210–217, (2000).Google Scholar
  11. [11]
    Schindler, I. and Tintarev, K. An abstract version of the concentration compactness principle.Revista Matematica Complutense,15, 1–20, (2002).MathSciNetGoogle Scholar
  12. [12]
    Tintarev, K. Mountain pass and impasse for nonsmooth functionals with constraints.Nonlin. Anal.,27, 1049–1054, (1966).CrossRefMathSciNetGoogle Scholar
  13. [13]
    Tintatev, K. Singular semilinear elliptic equations in the half-space.Rend. Istit. Mat. Univ. Trieste,33, 1–11, (2001).MathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2003

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversitySweden

Personalised recommendations