The Journal of Geometric Analysis

, Volume 16, Issue 1, pp 53–67 | Cite as

Operators commuting with a discrete subgroup of translations

  • H. G. Feichtinger
  • H. Führ
  • K. Gröchenig
  • N. Kaiblinger


We study the structure of operators from the Schwartz space S(ℝ n ) into the tempered distributions S′(ℝ n ) that commute with a discrete subgroup of translations. The formalism leads to simple derivations of recent results about the frame operator of shift-invariant systems, Gabor, and wavelet frames.

Math Subject Classifications

Primary 47B38, 47A15 secondary 42C40 

Key Words and Phrases

Commutant shift-invariant operator shift-invariant system frame operator Walnut representation modulation invariance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barbey, K., Hackenbroch, W., and Willie, H. Partially translation invariant linear systems,Integral Equations Operator Theory 3(3), 311–322, (1980).MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    de Boor, C., Devore, R.A., and Ron, A. The structure of finitely generated shift-invariant spaces inL 2(R d),J. Funct. Anal. 119(1), 37–78, (1994).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Bownik, M. A characterization of affine dual frames inL 2(R n),Appl. Comput. Harmon. Anal. 8 (2), 203–221, (2000).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Bownik, M. The structure of shift-invariant subspaces ofL 2(R n),J. Funct. Anal. 177(2), 282–309, (2000).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Casazza, P.G., Christensen, O., and Janssen, A.J.E.M. Weyl-Heisenberg frames, translation invariant systems and the Walnut representation,J. Funct. Anal. 180(1), 85–147, (2001).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Christensen, O.An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, (2003).MATHGoogle Scholar
  7. [7]
    Chui, C.K.An Introduction to Wavelets, Academic Press, Boston, (1992).MATHGoogle Scholar
  8. [8]
    Chui, C.K., Shi, X., and Stöckler, J. Affine frames, quasi-affine frames, and their duals,Adv. Comput. Math. 8(1–2), 1–17, (1998).MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Daubechies, I.Ten Lectures on Wavelets, SIAM, Philadelphia, (1992).MATHGoogle Scholar
  10. [10]
    Daubechies, I., Landau, H.J., and Landau, Z. Gabor time-frequency lattices and the Wexler-Raz identity,J. Fourier Anal. Appl. 1(4), 437–478, (1995).MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Feichtinger, H.G. and Kozek, W. Quantization of TF lattice-invariant operators on elementary LCA groups, inGabor Analysis and Algorithms, Feichtinger, H.G. and Strohmer, T., Eds, Birkhäuser, Boston, 233–266, (1998).Google Scholar
  12. [12]
    Feichtinger, H.G. and Strohmer, T. Eds.,Gabor Analysis and Algorithms, Birkhäuser, Boston, (1998).MATHGoogle Scholar
  13. [13]
    Feichtinger, H.G. and Strohmer, T., Eds.,Advances in Gabor Analysis, Birkhäuser, Boston, (2003).MATHGoogle Scholar
  14. [14]
    Feichtinger, H.G. and Zimmermann, G.A. Banach space of test functions for Gabor analysis, inGabor Analysis and Algorithms, Feichtinger, H.G. and Strohmer, T., Eds., Birkhäuser, Boston, 123–170, (1998).Google Scholar
  15. [15]
    Gelfand, I.M. and Ya, N.Generalized Functions 4, Academic Press, New York (1964).Google Scholar
  16. [16]
    Gressman, P., Labate, D., Weiss, G., and Wilson, E. Affine, quasi-affine and co-affine frames, inBeyond Wavelets, Welland, G.W., Ed., Elsevier, 215–223, (2003).Google Scholar
  17. [17]
    Gröchenig, K.Foundations of Time-Frequency Analysis, Birkhäuser, Boston, (2001).MATHGoogle Scholar
  18. [18]
    Helson, H.Lectures on Invariant Subspaces, Academic Press, New York, (1964).MATHGoogle Scholar
  19. [19]
    Hernádez, E., Labate, D., and Weiss, G. A unified characterization of reproducing systems generated by a finite family II,J. Geom. Anal. 12(4), 615–662, (2002).MathSciNetGoogle Scholar
  20. [20]
    Hernández, E., Labate, D., Weiss, G., and Wilson, E. Oversampling, quasi-affine frames, and wave packets,Appl. Comput Harmon. Anal. 16(2), 111–147, (2004).MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Hewitt, E., and Ross, K.A.Abstract Harmonic Analysis II, 2nd ed., Springer, Berlin, (1970).MATHGoogle Scholar
  22. [22]
    Hörmander, L. Estimates for translation invariant operators inL p spaces,Acta Math. 104, 93–140, (1960).MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Hörmander, L.The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer, Berlin, Distribution theory and Fourier analysis, (1990).MATHGoogle Scholar
  24. [24]
    Heil, C.E. and Walnut, D.F. Continuous and discrete wavelet transforms.SIAM Rev. 31(4), 628–666, (1989).MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Hernández, E. and Wejss, G.A First Course on Wavelets, CRC Press, Roca Raton, (1996).MATHGoogle Scholar
  26. [26]
    Janssen, A.J.E.M. Duality and biorthogonality for Weyl-Heisenberg frames.J. Fourier Anal. Appl. 1(4), 403–436, (1995).MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Janssen, A.J.E.M. The duality condition for Weyl-Heisenberg frames, inGabor Analysis and Algorithms, Feichtinger, H.G. and Strohmer, T., Eds., Birkhäuser, Boston, 33–84, (1998).Google Scholar
  28. [28]
    Labate, D. A unified characterization of reproducing systems generated by a finite family,J. Geom. Anal. 12 (3), 469–491, (2002).MATHMathSciNetGoogle Scholar
  29. [29]
    Meyer, Y.Wavelets and Operators, Cambridge University Press, (1992).Google Scholar
  30. [30]
    Ron, A. and Shen, Z. Frames and stable bases for shift-invariant subspaces ofL 2(R d),Canad. J. Math. 47(5), 1051–1094, (1995).MATHMathSciNetGoogle Scholar
  31. [31]
    Ron, A. and Shen, Z. Affine systems inL 2(R d) II, Dual systems,J. Fourier Anal. Appl. 3(5), 617–637, Dedicated to the memory of Richard J. Duffin, (1997).CrossRefMathSciNetGoogle Scholar
  32. [32]
    Ron, A. and Shen, Z. Affine systems inL 2(R d): The analysis of the analysis operator.J. Funct. Anal. 148(2), 408–447, (1997).MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Ron, A. and Shen, Z. Weyl-Heisenberg frames and Riesz bases inL 2(R d),Duke Math. J. 89(2), 237–282, (1997).MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    Walnut, D.F. Continuity properties of the Gabor frame operator,J. Math. Anal. Appl. 165(2), 479–504, (1992).MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Wang, X. The study of wavelets from the properties of their Fourier transforms, PhD thesis, Washington University St. Louis, (1995).Google Scholar
  36. [36]
    Wexler, J. and Raz, S. Discrete Gabor expansions,Signal Process 21(3), 207–221, (1990).CrossRefGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2006

Authors and Affiliations

  • H. G. Feichtinger
    • 1
  • H. Führ
    • 2
  • K. Gröchenig
    • 2
  • N. Kaiblinger
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Institute of Biomathematics and BiometryGSF Research Center for Environment and HealthNeuherbergGermany

Personalised recommendations