Folia Microbiologica

, Volume 48, Issue 2, pp 199–202 | Cite as

Passing of fluorescein derivatives into the hyphae ofPhanerochaete chrysosporium

  • I. Grgič
  • A. Perdih


Fluorescein derivatives added into the growth medium were decolorized during submerged cultivation ofPhanerochaete chrysosporium. The highest decrease of absorbanceA 450 was observed in the growth phase regardless of the presence of inducers Tween 80 or poly(ethylene glycol) (PEG). Fluorescein linked to PEG was prepared and, after addition to cultures, shown to stimulate the production of lignin peroxidase. Passing of fluorescing substances into hyphae (observed by confocal microscopy) showed that they were concentrated on some structures inside hyphae.


Lignin Peroxidase Veratryl Veratryl Alcohol Polycyclic Aromatic Hydrocarbon Degradation Fluorescein Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baron-Epel O., Hernandez D., Jiang L.W., Meiners S., Schindler M.: Dynamic continuity of cytoplasmic and membrane compartments between plant cells.J.Cell Biol. 106, 715–721 (1988).PubMedCrossRefGoogle Scholar
  2. Cole L., Davies D., Hyde G.J., Ashord A.E.: ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmatic reticulum and Golgi bodies from the tabular-vacuole system in living hyphae ofPisolithus tinctorius.J.Microsc. 197, 239–248 (2000).PubMedCrossRefGoogle Scholar
  3. Grgič I., Podgornik H., Berovič M., Perdih A.: Improvements in the determination of manganese peroxidase activity.Biotechnol. Lett. 23, 1039–1042 (2001).CrossRefGoogle Scholar
  4. Hammel K.E.: Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi.Environ.Health Perspect. 103, 41–43 (1995).PubMedCrossRefGoogle Scholar
  5. Jäger A., Croan S., Kirk T.K.: Production of ligninases and degradation of lignin in agitated submerged cultures ofPhanerochaete chrysosporium.Appl.Environ.Microbiol. 50, 1274–1278 (1985).PubMedGoogle Scholar
  6. Katič M., Frantar J., Grgič I., Podgornik H., Perdih A.: Polyoxyethylene stimulates lignin peroxidase production inPhanerochaete chrysosporium.Folia Microbiol. 43, 631–634 (1998).CrossRefGoogle Scholar
  7. Kawai S., Jensen K.A., Bao W., Hammel K.E.: New polymeric model substrates for the study of microbial ligninolysis.Appl.Environ.Microbiol. 61, 3407–3414 (1995).PubMedGoogle Scholar
  8. Knapp J.S., Newby P.S., Reece L.P.: Decolorization of dyes by wood-rotting basidiomycete fungi.Enzyme Microb.Technol. 17, 664–668 (1995).CrossRefGoogle Scholar
  9. Kos N., Perdih A.: Polyoxirane distribution in aPhanerochaete chrysosporium culture.Folia Microbiol. 44, 527–529 (1999).CrossRefGoogle Scholar
  10. Lanz E., Slavík J., Kotyk A.: 2′,7′-Bis-(2-carboxyethyl)-5(6)-carboxyfluorescein as a dual-emission fluorescent indicator of intracellular pH suitable for argon laser confocal microscopy.Folia Microbiol. 44, 429–434 (1999).CrossRefGoogle Scholar
  11. Podgornik H., Grgič I., Perdih A.: Decolorization rate of dyes using lignin peroxidases ofPhanerochaete chrysosporium.Chemosphere 38, 1353–1359 (1999).CrossRefGoogle Scholar
  12. Podgornik H., Podgornik A., Perdih A.: Kinetic measurements of lignin peroxidase activity.Acta Chim.Slov. 44, 253–260 (1997).Google Scholar
  13. Reddy C.A.: The potential for white-rot fungi in the treatment of pollutants.Curr.Opin.Biotechnol. 6, 320–328 (1995).CrossRefGoogle Scholar
  14. Rodriguez Couto S., Dominguez A., Sanroman Á.: Production of managanese-dependent peroxidase in a new solid-state bioreactor byPhanerochaete chrysosporium grown on wood shavings. Application to the decolorization of synthetic dyes.Folia Microbiol. 47, 417–422 (2002).CrossRefGoogle Scholar
  15. Rotman B., Papermaster B.W.: Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of florigenic esters.Biochemistry 55, 134–141 (1966).Google Scholar
  16. Sam M., Yesilada O.: Decolorization of Orange II dye by white-rot fungi.Folia Microbiol. 46, 143–146 (2001).CrossRefGoogle Scholar
  17. Sani R.K., Azmi W., Banerjee U.C.: Comparison of static and shake culture in the decolorization of textile dyes and dye effluents byPhanerochaete chrysosporium.Folia Microbiol. 43, 85–88 (1998).CrossRefGoogle Scholar
  18. Stewart A., Deacon J.W.: Vital fluorochromes as tracers for fungal growth studies.Biotech.Histochem. 70, 57–65 (1995).PubMedCrossRefGoogle Scholar
  19. Swamy J., Ramsay J.A.: The evaluation of white rot fungi in the decolorization of textile dyes.Enzyme Microb.Technol. 24, 130–137 (1999).CrossRefGoogle Scholar
  20. Tsuji T., Kawasaki Y., Takeshima S., Sekiya T., Tanaka S.: A new fluorescence staining assay for visualizing living microorganisms in soil.Appl.Environ.Microbiol. 61, 3415–3421 (1995).PubMedGoogle Scholar
  21. Verma P., Madamwar D.: Decolorization of synthetic textile dyes by lignin peroxidase ofPhanerochaete chrysosporium.Folia Microbiol. 47, 283–286 (2002).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations