Skip to main content
Log in

Passing of fluorescein derivatives into the hyphae ofPhanerochaete chrysosporium

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Fluorescein derivatives added into the growth medium were decolorized during submerged cultivation ofPhanerochaete chrysosporium. The highest decrease of absorbanceA 450 was observed in the growth phase regardless of the presence of inducers Tween 80 or poly(ethylene glycol) (PEG). Fluorescein linked to PEG was prepared and, after addition to cultures, shown to stimulate the production of lignin peroxidase. Passing of fluorescing substances into hyphae (observed by confocal microscopy) showed that they were concentrated on some structures inside hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baron-Epel O., Hernandez D., Jiang L.W., Meiners S., Schindler M.: Dynamic continuity of cytoplasmic and membrane compartments between plant cells.J.Cell Biol. 106, 715–721 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Cole L., Davies D., Hyde G.J., Ashord A.E.: ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmatic reticulum and Golgi bodies from the tabular-vacuole system in living hyphae ofPisolithus tinctorius.J.Microsc. 197, 239–248 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Grgič I., Podgornik H., Berovič M., Perdih A.: Improvements in the determination of manganese peroxidase activity.Biotechnol. Lett. 23, 1039–1042 (2001).

    Article  Google Scholar 

  • Hammel K.E.: Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi.Environ.Health Perspect. 103, 41–43 (1995).

    Article  PubMed  Google Scholar 

  • Jäger A., Croan S., Kirk T.K.: Production of ligninases and degradation of lignin in agitated submerged cultures ofPhanerochaete chrysosporium.Appl.Environ.Microbiol. 50, 1274–1278 (1985).

    PubMed  Google Scholar 

  • Katič M., Frantar J., Grgič I., Podgornik H., Perdih A.: Polyoxyethylene stimulates lignin peroxidase production inPhanerochaete chrysosporium.Folia Microbiol. 43, 631–634 (1998).

    Article  Google Scholar 

  • Kawai S., Jensen K.A., Bao W., Hammel K.E.: New polymeric model substrates for the study of microbial ligninolysis.Appl.Environ.Microbiol. 61, 3407–3414 (1995).

    PubMed  CAS  Google Scholar 

  • Knapp J.S., Newby P.S., Reece L.P.: Decolorization of dyes by wood-rotting basidiomycete fungi.Enzyme Microb.Technol. 17, 664–668 (1995).

    Article  Google Scholar 

  • Kos N., Perdih A.: Polyoxirane distribution in aPhanerochaete chrysosporium culture.Folia Microbiol. 44, 527–529 (1999).

    Article  Google Scholar 

  • Lanz E., Slavík J., Kotyk A.: 2′,7′-Bis-(2-carboxyethyl)-5(6)-carboxyfluorescein as a dual-emission fluorescent indicator of intracellular pH suitable for argon laser confocal microscopy.Folia Microbiol. 44, 429–434 (1999).

    Article  CAS  Google Scholar 

  • Podgornik H., Grgič I., Perdih A.: Decolorization rate of dyes using lignin peroxidases ofPhanerochaete chrysosporium.Chemosphere 38, 1353–1359 (1999).

    Article  Google Scholar 

  • Podgornik H., Podgornik A., Perdih A.: Kinetic measurements of lignin peroxidase activity.Acta Chim.Slov. 44, 253–260 (1997).

    Google Scholar 

  • Reddy C.A.: The potential for white-rot fungi in the treatment of pollutants.Curr.Opin.Biotechnol. 6, 320–328 (1995).

    Article  Google Scholar 

  • Rodriguez Couto S., Dominguez A., Sanroman Á.: Production of managanese-dependent peroxidase in a new solid-state bioreactor byPhanerochaete chrysosporium grown on wood shavings. Application to the decolorization of synthetic dyes.Folia Microbiol. 47, 417–422 (2002).

    Article  CAS  Google Scholar 

  • Rotman B., Papermaster B.W.: Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of florigenic esters.Biochemistry 55, 134–141 (1966).

    CAS  Google Scholar 

  • Sam M., Yesilada O.: Decolorization of Orange II dye by white-rot fungi.Folia Microbiol. 46, 143–146 (2001).

    Article  CAS  Google Scholar 

  • Sani R.K., Azmi W., Banerjee U.C.: Comparison of static and shake culture in the decolorization of textile dyes and dye effluents byPhanerochaete chrysosporium.Folia Microbiol. 43, 85–88 (1998).

    Article  CAS  Google Scholar 

  • Stewart A., Deacon J.W.: Vital fluorochromes as tracers for fungal growth studies.Biotech.Histochem. 70, 57–65 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Swamy J., Ramsay J.A.: The evaluation of white rot fungi in the decolorization of textile dyes.Enzyme Microb.Technol. 24, 130–137 (1999).

    Article  Google Scholar 

  • Tsuji T., Kawasaki Y., Takeshima S., Sekiya T., Tanaka S.: A new fluorescence staining assay for visualizing living microorganisms in soil.Appl.Environ.Microbiol. 61, 3415–3421 (1995).

    PubMed  Google Scholar 

  • Verma P., Madamwar D.: Decolorization of synthetic textile dyes by lignin peroxidase ofPhanerochaete chrysosporium.Folia Microbiol. 47, 283–286 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Perdih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grgič, I., Perdih, A. Passing of fluorescein derivatives into the hyphae ofPhanerochaete chrysosporium . Folia Microbiol 48, 199–202 (2003). https://doi.org/10.1007/BF02930956

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930956

Keywords

Navigation