Skip to main content
Log in

Parameterization for the depth of the entrainment zone above the convectively mixed layer

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

It has been noted that when the convective Richardson numberRi* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson numberRi* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper. Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both water-tank and atmosphere as compared with the traditional method usingRi*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better thanRi*.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angevine, W. M., A. B. White, and S. K. Avery, 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler.Bound.-Layer Meteor.,68, 375–385.

    Article  Google Scholar 

  • Betts, A. K., 1976: Modeling subcloud layer structure and interaction with a shallow cumulus layer.J. Atmos. Sci.,33, 2326–2382.

    Article  Google Scholar 

  • Beyrich, F., and S. E. Gryning, 1998: Estimation of the entrainment zone depth in a shallow convective boundary layer from sodar data.J. Appl. Meteor.,37, 255–268.

    Article  Google Scholar 

  • Boers, R. A., 1989: A parameterization of the depth of the entrainment zone.J. Appl. Meteor.,28, 107–111.

    Article  Google Scholar 

  • Boers, R. A., and E. W. Eloranta, 1986: Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer.Bound.-Layer Meteor.,34, 357–375.

    Article  Google Scholar 

  • Crum, T. D., R. B. Stull, and E. W. Eloranta, 1987: Coincident lidar and aircraft observations of entrainment into thermals and mixed layer.J. Climate Appl. Meteor.,26, 774–788.

    Article  Google Scholar 

  • Deardorff, J. W., 1979: Prediction of convective mixed layer entrainment for realistic capping inversion structure.J. Atmos. Sci.,27, 1211–1213.

    Article  Google Scholar 

  • Deardorff, J. W., 1983: A multilimit mixed layer entrainment formulation.J. Phys. Oceanogr.,13, 988–1002.

    Article  Google Scholar 

  • Deardorff, J. W., G. E. Willis, and B. H. Stockton, 1980: Laboratory studies of the entrainment zone of a convectively mixed layer.J. Fluid Mech.,100, 41–64.

    Article  Google Scholar 

  • Gryning, S. E., and E. Batchvarova, 1994: Parameterization of the depth of the entrainment zone above the daytime mixed layer.Quart. J. Roy. Meteor. Soc.,120, 47–58.

    Article  Google Scholar 

  • Hageli, P., D. G. Steyn, and K. B. Strawbridge, 1993: Spatial and temporal variability of mixed-layer depth and entrainment zone thickness.Bound.-Layer Meteor.,97, 47–71.

    Article  Google Scholar 

  • Kim, S. W., S. U. Park, and C. H. Moeng, 2003: Entrainment process in the convective boundary layer with varying wind shear.Bound.-Layer Meteor.,108, 221–245.

    Article  Google Scholar 

  • Li Pingyang, Jiang Weimei, Sun Jianning, and Yuan Renmin, 2003: A laboratory modeling of the velocity field in the convective boundary with the particle image velocimetry technique.Adv. Atmos. Sci.,20(4), 631–637.

    Article  Google Scholar 

  • Mahrt, L., 1979: Penetrative convection at the top of a growing boundary layer.Quart. J. Roy. Meteor, Soc.,105, 469–485.

    Article  Google Scholar 

  • Nelson, E., R. B. Stull, and E. W. Eloranta, 1989: A prognostic relationship for entrainment zone thickness.J. Appl. Meteor.,28, 885–902.

    Article  Google Scholar 

  • Sorbjan, Z., 1990: Similarity scales and universal profiles of statistical moments in the convective boundary layer.J. Appl. Meteor.,29, 762–775.

    Article  Google Scholar 

  • Stull, R. B., 1973: Inversion rise model based on penetrative convection.J. Atmos. Sci.,30, 1092–1099.

    Article  Google Scholar 

  • Stull, R. B., and E. W. Eloranta, 1984: Boundary layer experiment 1983.Bull. Amer. Meteor. Soc.,65, 450–456.

    Article  Google Scholar 

  • Zeman, O., and H. Tennedes, 1977: Parameterization of the turbulent energy budget at the top of the day-time atmospheric boundary layer.J. Atmos. Sci.,34, 111–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Jianning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jianning, S., Weimei, J., Ziyun, C. et al. Parameterization for the depth of the entrainment zone above the convectively mixed layer. Adv. Atmos. Sci. 22, 114–121 (2005). https://doi.org/10.1007/BF02930874

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930874

Key words

Navigation