Advances in Atmospheric Sciences

, Volume 22, Issue 1, pp 69–89 | Cite as

Finite-time normal mode disturbances and error growth during Southern Hemisphere blocking

  • Mozheng Wei
  • Jorgen S. Frederiksen


The structural organization of initially random errors evolving in a barotropic tangent linear model, with time-dependent basic states taken from analyses, is examined for cases of block development, maturation and decay in the Southern Hemisphere atmosphere during April, November, and December 1989. The statistics of 100 evolved errors are studied for six-day periods and compared with the growth and structures of fast growing normal modes and finite-time normal modes (FTNMs). The amplification factors of most initially random errors are slightly less than those of the fastest growing FTNM for the same time interval. During their evolution, the standard deviations of the error fields become concentrated in the regions of rapid dynamical development, particularly associated with developing and decaying blocks. We have calculated probability distributions and the mean and standard deviations of pattern correlations between each of the 100 evolved error fields and the five fastest growing FTNMs for the same time interval. The mean of the largest pattern correlation, taken over the five fastest growing FTNMs, increases with increasing time interval to a value close to 0.6 or larger after six days. FTNM 1 generally, but not always, gives the largest mean pattern correlation with error fields. Corresponding pattern correlations with the fast growing normal modes of the instantaneous basic state flow are significant but lower than with FTNMs. Mean pattern correlations with fast growing FTNMs increase further when the time interval is increased beyond six days.

Key words

normal modes finite-time normal modes blocking tangent linear model pattern correlations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. L., 1991: The robustness of barotropic unstable modes in a zonally varying atmosphere.J. Atmos. Sci.,48, 2393–2410.CrossRefGoogle Scholar
  2. Anderson, J. L., 1993: The climatology of blocking in a numerical forecast model.J. Climate,6, 1041–1056.CrossRefGoogle Scholar
  3. Anderson, J. L., 1996: Selection of initial conditions for ensemble forecasts in a simple perfect model framework.J. Atmos. Sci.,53, 22–36.CrossRefGoogle Scholar
  4. Arnoldi, W. E., 1951: The principle of minimized iterations in the solution of the matrix eigenvalue problem.Quarterly of Applied Mathematics,9, 17–29.Google Scholar
  5. Bengtsson, L., 1981: Numerical prediction of atmospheric blocking: A case study.Tellus,33, 19–24.Google Scholar
  6. Borges, M. D., and D. L. Hartmann, 1992: Barotropic instability and optimal perturbations of observed nonzonal flows.J. Atmos. Sci.,49, 335–354.CrossRefGoogle Scholar
  7. Buizza, R. and F. Molteni, 1996: The role of finite-time barotropic instability during transition to blocking.J. Atmos. Sci.,53, 1675–1697.CrossRefGoogle Scholar
  8. Buizza, R., P. Houtekamer, Z. Toth, G. Pelerin, Mozheng Wei, and Y. Zhu, 2005: A comparison of the ECMWF, MSC and NCEP global ensemble prediction systems.Mon. Wea. Rev., in press.Google Scholar
  9. CMB, 1989: Climate Monitoring Bulletin, Southern Hemisphere, No. 39 April; No. 46, November; No.47, December 1989, National Climate Centre, Bureau of Meteorology, Australia.Google Scholar
  10. Colucci, S. J. and D. P. Baumhefner, 1992: Initial weather regimes as predictors of numerical 30-day mean forecast accuracy.J. Atmos. Sci.,49, 1652–1671.CrossRefGoogle Scholar
  11. Coughlan, M. L., 1983: A comparative climatology of blocking action in the two hemispheres.Australian Meteorological Magazine,31, 3–13.Google Scholar
  12. de Pondeca, M. S. F. A., A. Barcilon, and X. Zou, 1998a: An adjoint sensitivity study of the efficacy of modal and nonmodal perturbations in causing model block onset.J. Atmos. Sci.,55, 2095–2118.CrossRefGoogle Scholar
  13. de Pondeca, M. S. F. A., A. Barcilon, and X. Zou, 1998b: The role of wave breaking, linear instability, and PV transports in model block onset.J. Atmos. Sci.,55, 2852–2873.CrossRefGoogle Scholar
  14. Errico, R. M., T. Vukicevic, and K. Raeder, 1993: Examination of the accuracy of a tangent linear model.Tellus,45A, 462–477.Google Scholar
  15. Farrell, B. F., 1989: Optimal excitation of baroclinic waves.J. Atmos. Sci.,46, 1193–1206.CrossRefGoogle Scholar
  16. Frederiksen, J. S., 1982: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis.J. Atmos. Sci.,39, 970–982.Google Scholar
  17. Frederiksen, J. S., 1984: The onset of blocking and cyclogenesis in Southern Hemisphere synoptic flows: Linear theory.J. Atmos. Sci.,41, 1116–1131.CrossRefGoogle Scholar
  18. Frederiksen, J. S., 1997: Adjoint sensitivity and finite-time normal mode disturbances during blocking.J. Atmos. Sci.,54, 1144–1165.CrossRefGoogle Scholar
  19. Frederiksen, J. S.; 1998: Precursors to blocking anomalies: The tangent linear and inverse problems.J. Atmos. Sci.,55, 2419–2436.CrossRefGoogle Scholar
  20. Frederiksen, J. S., 2000: Singular vectors, finite-time normal modes and error growth during blocking.J. Atmos. Sci.,57, 312–333.CrossRefGoogle Scholar
  21. Frederiksen, J. S., and R. C. Bell, 1990: North Atlantic blocking during January 1979: Linear theory.Quart. J. Roy. Meteor. Soc.,116, 1289–1313.CrossRefGoogle Scholar
  22. Frederiksen, J. S., and G. Branstator, 2001: Seasonal and intraseasonal variability of large-scale barotropic modes.J. Atmos. Sci.,58, 50–69.CrossRefGoogle Scholar
  23. Frederiksen, J. S., M. A. Collier, and A. B. Watkins, 2004: Ensemble prediction of blocking regime transitions.Tellus,56A, 485–500.Google Scholar
  24. Goldhirsch, I., S. A. Orszag, and B. K. Maulik, 1987: An efficient method for computing leading eigenvalues and eigenvectors of large asymmetric matrices.J. Sci. Computing.,2, 33–58.CrossRefGoogle Scholar
  25. Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory.Large Scale Dynamic Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–167.Google Scholar
  26. Houtekamer, P. L., and J. Derome, 1995: Methods for ensemble prediction.Mon. Wea. Rev.,123, 2181–2196.CrossRefGoogle Scholar
  27. Kimoto, M., H. Mukougawa, and S. Yoden, 1992: Mediumrange forecast skill variation and blocking transition: A case study.Mon. Wea. Rev.,120, 1616–1627.CrossRefGoogle Scholar
  28. Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model.Tellus,40A, 81–95.CrossRefGoogle Scholar
  29. Legras, B., and R. Vautard, 1996: A guide to Liapunov vectors.Proc. of a Seminar Held at ECMWF on Predictability, 4–8 September 1995, Vol. I, 143–156.Google Scholar
  30. Lejenas, H., 1984: Characteristics of southern hemisphere blocking as determined from a time series of observational data.Quart. J. Roy. Meteor. Soc.,110, 967–979.Google Scholar
  31. Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model.Tellus,17, 321–333.CrossRefGoogle Scholar
  32. Molteni, F., and T. Palmer, 1993: Predictability and finitetime instability of the northern winter circulation.Quart. J. Roy. Meteor. Soc.,119, 269–298CrossRefGoogle Scholar
  33. Molteni, F., R. Buizza, T. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation.Quart. J. Roy. Meteor. Soc.,122, 73–119CrossRefGoogle Scholar
  34. Mu, M., and W. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation.Chinese Sci. Bull.,48, 1045–1047.CrossRefGoogle Scholar
  35. Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications.Nonlinear Process in Geophysics,10, 493–501.CrossRefGoogle Scholar
  36. Noar, P. F., 1983: Numerical modelling of blocking with reference to June 1982.Australian Meteorological Magazine,31, 37–49.Google Scholar
  37. Noone, D., and I. Simmonds, 1998: Similarity of “fastgrowing perturbations” and an illustrative experiment with ensemble forecasting.Australian Meteorological Magazine,47, 5–19.Google Scholar
  38. Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model.Bull. Amer. Meteor. Soc.,74, 49–65.CrossRefGoogle Scholar
  39. Saad, Y., 1992:Numerical Methods for Large Eigenvalue Problems. Halsted Press-John Wiley & Sons Inc., 346pp.Google Scholar
  40. Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagations and instability, and atmospheric teleconnection patterns.J. Atmos. Sci.,40, 1363–1392.CrossRefGoogle Scholar
  41. Szunyogh, I., E. Kalnay, and Z. Toth, 1997: A comparison of Lyapunov and Optimal vectors in a low-resolution GCM.Tellus,48A, 200–227.Google Scholar
  42. Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking.Tellus,42A, 343–365.Google Scholar
  43. Tibaldi, S., P. Ruti, and M. Maruca, 1995: Operational predictability of winter blocking at ECMWF: An update.Ann. Geophysicae,13, 305–317.Google Scholar
  44. Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: the generation of perturbations.Bull. Amer. Meteor. Soc.,174, 2317–2330.CrossRefGoogle Scholar
  45. Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method.Mon. Wea. Rev.,125, 3297–3319.CrossRefGoogle Scholar
  46. Tribbia, J., and D. Baumhefner, 1993: On the problem of prediction beyond the deterministic range.Proc. NATO Workshop on Predictions of Interannual Climate Variations, S. Shukla, Ed., NATO ASI Series, Springer-Verlag, 251–265.Google Scholar
  47. van Loon, H., 1956: Blocking action in the Southern Hemisphere, Part I.Notos,5, 171–177.Google Scholar
  48. Veyre, P., 1991: Direct prediction of error variances by the tangent linear model: A way to forecast uncertainty in the short range?Proc. ECMWF Workshop on New Developments in Predictability, Reading, UK, 65–86.Google Scholar
  49. Wei, Mozheng, 2000: Quantifying local instability and predictability of chaotic dynamical systems by means of local metric entropy,International Journal of Bifurcation and Chaos,10, No. 1, 135–154.CrossRefGoogle Scholar
  50. Wei, Mozheng, and Z. Toth, 2003: A New Measure of Ensemble Performance: Perturbation versus Error Correlation Analysis (PECA).Mon. Wea. Rev.,131, 1549–1565.CrossRefGoogle Scholar
  51. Whitaker, J. S., and A. Barcilon, 1992: Type B cyclogenesis in zonally varying flow.J. Atmos. Sci,49, 1877–1892.CrossRefGoogle Scholar
  52. Wright, A. D. F., 1974: Blocking action in the Australian region. Tech. Rep., No. 10, Bureau of Meteorology, Australia, 29pp.Google Scholar

Copyright information

© Advances in Atmospheric Sciences 2005

Authors and Affiliations

  1. 1.CSIRO Atmospheric ResearchAspendaleAustralia

Personalised recommendations