Skip to main content
Log in

Redox potential in acetone-butanol fermentations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In batch and continuous cultivations ofClostridium acetobutylicum ATCC 824 on lactose, a strong relationship was observed between redox potential of broth and the cellular metabolism. The specific productivity of butanol as well as of butyric acid was found to be maximum at a redox potential of -250 mV. The specific production rate of butyric acid decreased rapidly at redox potentials. For butanol, however, it achieved a lower but stable value. This was true for dynamic as well as steady states. The continuous fermentations involving lactose exhibited sustained oscillations at low dilution rates. These oscillations appear to be related to butanol toxicity to the growth of cells. At higher dilution rates where butanol concentrations were relatively low, no such oscillations were observed. It can be concluded that broth redox potential is an excellent indicator of the resulting fermentation product partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson, M. J., Peterson, W. H., and Fred, E. B. (1931),J. Biol. Chem.,91, 569.

    CAS  Google Scholar 

  2. Beesch, S. C. (1953),Appl. Microbiol.,1, 85.

    CAS  Google Scholar 

  3. Bahl, H., Andersch, W., and Gottschalk, G. (1982),Eur. J. Appl. Microbiol. Biotechnol,15, 201.

    Article  CAS  Google Scholar 

  4. Gapes, J. R., Larson, V. F., and Maddox, I. S. (1982), “Microbial production ofn-butanol: some problems associated with the fermentation,” pp. 90–101. In “Energy from biomass,” Proceedings of the 14th Biotechnology Conference, Palmerston North, New Zealand (1982).

    Google Scholar 

  5. Gottschal, J. C, and Morris, J. G. (1981),FEMS Microbiol. Lett.,12, 385.

    Article  CAS  Google Scholar 

  6. Martin, J. R., Petitdemange, H., Ballongue, J., and Gay, R. (1983),Biotechnol. Lett.,5, 89.

    Article  CAS  Google Scholar 

  7. Jones, D. T., and Woods, D. R. (1986),Microbiol. Rev.,50, 484.

    CAS  Google Scholar 

  8. Kim, B. H., Bellows, P., Datta, R., and Zeikus, J. G. (1984),Appl. Environ. Microbiol.,48, 764.

    CAS  Google Scholar 

  9. Bahl, H., Gottwald, M., Kuhn, A., Rale, V., Andersch, W., and Gottschalk, G. (1986),Appl. Environ. Microbiol.,52, 169.

    CAS  Google Scholar 

  10. Aubel, E., Rosenberg, A. J., and Grunberg, M. (1946),Helv. Chim. Act.,29, 1267.

    Article  CAS  Google Scholar 

  11. Douglas, F., and Rigby, G. J. (1974),J. Appl. Bad.,37, 251.

    CAS  Google Scholar 

  12. Hungate, R. E. (1950),Bacteriol. Rev.,14, 1–49.

    CAS  Google Scholar 

  13. Nelson, N. (1944),J. Biol. Chem.,153, 375.

    CAS  Google Scholar 

  14. Herrero, A. A. (1983),Trends Biotechnol.,1, 49.

    Article  CAS  Google Scholar 

  15. Haggstrom, L. (1985),Biotechnol. Adv.,3, 13.

    Article  CAS  Google Scholar 

  16. van Uden, N. (1985),Ann. Rep. Ferment. Processes,8, 11.

    Google Scholar 

  17. Ounine, K., Petitdemange, H., Raval, G., and Gay, R. (1985),Appl. Environ. Microbiol.,49, 874.

    CAS  Google Scholar 

  18. Andersch, W., Bahl, H., and Gottschalk, G. (1983),Eur. J. Appl. Microbiol. Biotechnol.,18, 327.

    Article  CAS  Google Scholar 

  19. Kim, B. H., and Zeikus, J. G. (1985),Dev. Ind. Microbiol.,26, 1.

    Google Scholar 

  20. George, H. A., and Chen, J. S. (1983),Appl. Environ. Microbiol.,46, 321.

    CAS  Google Scholar 

  21. Douglas, F., Hambleton, R., and Rigby, G. J. (1974),J. Appl. Bacteriol.,36, 625.

    Google Scholar 

  22. Dutta, R., and Zeikus, J. G. (1985),Appl. Environ. Microbiol.,49, 522.

    Google Scholar 

  23. Meyer, C. L., Mclaughlin, J. K., and Papautsakis, E. T. (1985),Biotechnol. Lett.,7, 37.

    Article  CAS  Google Scholar 

  24. Doremus, M. G., Linden, J. C, and Moreira, A. R. (1985),Biotechnol. Bioeng.,27, 259.

    Article  Google Scholar 

  25. Eliasberger, P. S., (1930),Biochem. Z.,220, 259.

    Google Scholar 

  26. Yerushalmi, L., Volesky, B., and Szczesny, T., (1985),Appl. Microbiol. Biotechnol.,22, 103.

    Article  CAS  Google Scholar 

  27. Jungerman, K., Thauer, R. K., Leimenstoll, G., and Decker, K. (1973),Biochim. Biophys. Acta,305, 268.

    Article  Google Scholar 

  28. Huang, L., Gibbons, L. N., and Forsberg, C. W. (1985),Appl. Environ. Microbiol.,50, 1043.

    CAS  Google Scholar 

  29. Fond, O., Matta-Ammouri, G., Petitdemange, H., and Engasser, E. (1985),Appl. Microbiol. Biotechnol.,22, 195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Bajpai, R. & Iannotti, E.L. Redox potential in acetone-butanol fermentations. Appl Biochem Biotechnol 18, 175–186 (1988). https://doi.org/10.1007/BF02930824

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930824

Index Entries

Navigation