Folia Microbiologica

, 7:207 | Cite as

Protein turnover in resting bacteria

  • M. H. Proctor


Coliform cells resting in phosphate buffer at 30° C show protein turnover at approximately 2% per hour.

In this turnover reaction the incorporation of amino acids into protein is inhibited by sodium azide and chloramphenicol, but the release of amino acids from protein is not inhibited by either chloramphenicol or sodium azide.

In resting cells both ribosomes and soluble proteins lose amino acid residues, but amino acids are only incorporated into the soluble proteins.

From resting cells which are releasing amino acid residues from protein to the cold trichloroacetic acid-soluble fraction peptides have been isolated. These peptides contain amino acids at the same specific radioactivity as those in the cell protein being degraded. The peptides are probably intermediates in protein breakdownin vivo.

The resting bacteria contain proteolytic activities, these appear to be associated with the ribosomes and become active only when the ribosome is disrupted.

This study was made during the tenure of an Overseas Science Research Scholarship of the Exhibition of 1851, and was also supported by a grant from the Medical Research Council to defray the costs of isotopes. Dr. Kenneth McQuillen gave stimulating encouragement throughout the study and Professor E. F. Gale afforded the generous hospitality of his laboratory.


Basal Medium Chloramphenicol Proteolytic Activity Free Amino Acid Soluble Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

«Turnover» БEлков В КлEткАE БАктEрий В СтАдии Покоя


Инкдбируeмыe в фосфатном буфeрe клeтки колиобразнопо орпанизма обнаруживают «turnover» при скорости приблизитeлЬно 2%/чаА. В ходe этопо прeвращeния вклозeниe аминокислот в бeлки угнeтаeтся азидом натрия и влорамфeниколом. Однако на освобождeниe аминокислот из бeлков ни хлорамфeникол, ни азид натрия нe дeйствуют. В клeтках в стадии покоя аминокислоты освобождаются из рибосом и растворимы e бeлков, но вклочаются только в растворимыe бeлки. Из клeток в стадии покоя, выдeляющих аминокиАлоты бeлков во фракцию, eаствориму044E; в eолодной тритлорукАусной кислотe, были выдeлeны пeптиды, содeржайиe аминокислотK А такой жe спeцифичeской радиоактивноАтью, как аминокислоты в дeградирующих клeточных бeлоах. По-видимому, ати пeптиды являются промeжуточным продукРос дeгЄадации бeлков in vivo. В стадии покоя бактeeии обладают протeолитичeскойак тивностью, которая, по-видимому, илeeт оРношeниe к рибосомам и проявлпeРся Родько посдe их разрушeния.


  1. Bode, F., Hübener, H. J., Brückner, H., Hoeres, K.:Eine einfache quantitative Bestimmung von Aminosáuren im Papierchromatogramm. Naturwissenschaften 39: 524, 1952.CrossRefGoogle Scholar
  2. Carnegie Institution of Washington, Year Book 58 : 259, 1959.Google Scholar
  3. Chaloupka, J.:Physiological character of protein turnover in non-growing bacterial cells. Fol. microbiol. 5: 287, 1960.CrossRefGoogle Scholar
  4. Chaloupka, J.:Localization of a protease in the cell of Escherichia coli. Nature 189: 512, 1961.CrossRefPubMedGoogle Scholar
  5. Chaloupka, J., Liebster, J.:A proteolytic system in growing and non-growing cells of Escherichia coli. Fol. microbiol. 4: 167, 1959.CrossRefGoogle Scholar
  6. Chaloupka, J., Liebster, J., Janeček, J.:The use of labeled substrates for the study of intracellular proteinases. Proc. 2nd Int. Conf., v. 25, p. 140, Geneva 1958.Google Scholar
  7. French, C. S., Milner, H. W.:Disintegration of bacteria and small particles by high pressure extrusion. InMethods in Enzymology, Vol. 1, p. 64. Academic Press, New York and London 1955.CrossRefGoogle Scholar
  8. Gale, E. F., Paine, T. F!:The assimilation of amino acids by bacteria. 12.The action of inhibitors and antibiotics on the accumulation of free glutamic acid and the formation of combined glutamate in Staphylococcus aureus. Biochem. J. 48: 298, 1951.PubMedGoogle Scholar
  9. McQuillen, K.:Ribosomes and the synthesis of proteins. Progress in Biophysics and Biophysical Chemistry. 1962 (In press).Google Scholar
  10. McQuillen, K., Roberts, R. B.:The utilization of acetate for synthesis in Escherichia coli. J. biol. Chem. 207: 81, 1954.PubMedGoogle Scholar
  11. Mandelstam, J.:Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 110, 1958.PubMedGoogle Scholar
  12. Mandelstam, J.:The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bact. Rev. 24: 289, 1960.PubMedGoogle Scholar
  13. Proctor, M. H.:Protein and nucleic acid turnover in resting bacteria. Ph. D. Thesis, University of Cambridge 1961.Google Scholar
  14. Proctor, M. H., Wilson, P. W.:Nitrogen fixation by gram-negative bacteria. Nature 182: 891, 1958.CrossRefPubMedGoogle Scholar
  15. Sylvén, B., Tobias, C. A., Malmgren, H., Ottoson, R., Thorell, B.:Cyclic variations in the peptidase and catheptic activities of yeast culture synchronized with respect to cell multiplication.CrossRefPubMedGoogle Scholar
  16. Zamecnik, P. C:Historical and current aspects of the problem of protein synthesis. Harvey Lectures 54: 256, 1959.Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1962

Authors and Affiliations

  • M. H. Proctor
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeEngland

Personalised recommendations