On the curvature tensor of the Hodge metric of moduli space of polarized Calabi-Yau threefolds

  • Zhiqin Lu


In this article, we give an expression and some estimates of the curvature tensor of the Hodge metric over the moduli space of a polarized calabi-Yau threefold. The symmetricity of the Yukawa coupling is also studied. In the last section of this article, an extra restriction of the limiting Hodge structure for the degeneration of Calabi-Yau threefolds is given.

Math Subject Classifications

primary: 32G13 secondary 58D27 

Key Words and Phrases

universal deformation space Well Petersson metric Hodge metric 


  1. [1]
    Bryant, R. and Griffiths, P. Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle, inArithmetic and Geometry, Artin, M. and Tate, J., Eds., Birkhaüser, Boston, 77–85, 1983.Google Scholar
  2. [2]
    Freed, D.S. Special Kähler manifolds,Comm. Math. Phys. 203, no. 1, 31–52, (1999).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Griffiths, P., Ed.,Topics in Transcendental Algebraic Geometry, vol. 106 ofAnn. Math Studies, Princeton University Press, 1984.Google Scholar
  4. [4]
    Lu, Z. On the gradient estimates of the Yukawa coupling, in preparation.Google Scholar
  5. [5]
    Lu, Z. On the Hodge metric of the universal deformation space of Calabi-Yau threefolds,J. Geom. Anal. 11(1), 103–118, (2001).MATHMathSciNetGoogle Scholar
  6. [6]
    Lu, Z. A note on special Kähler manifolds,Math. Ann. 313, 711–713, (1999).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Mok, N. Compactification of complete Kähler surface of finite volume satisfying certain conditions,Ann. Math. 128, 383–425, (1989).MathSciNetCrossRefGoogle Scholar
  8. [8]
    Mok, N. and Zhong, J.Q. Compactifying complete Kähler manifolds of finite topological type and bounded curvature,Ann. Math. 129, 417–470, (1989).MathSciNetGoogle Scholar
  9. [9]
    Nannicini, A. Weil-Petersson metric in the moduli space of compact polarized Kähler-Einstein manifolds of zero first chern class,Manuscripta Mathematica 54, 405–438, (1986).MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Schumacher, G. The curvature of the Petersson-Weil metric on the moduli space of Kähler-Einstein manifolds, inComplex Analysis and Geometry, Ancona, V. and Silva, A., Eds., 339–345, 1993.Google Scholar
  11. [11]
    Siu, Y.T. Curvature of the Weil-Petersson metric in the moduli spaces of compact Kähler-Einstein manifolds of negative first chern class, inComplex Analysis, Papers in Honour of Wilhelm Stoll, Wong, P.-M. and Howard, A., Eds., Vieweg, Braunschweig, 1986.Google Scholar
  12. [12]
    Siu, Y.T. and Yau, S.-T. Compactification of negatively curved complete Kähler manifolds of finite volume, inSeminar on Differential Geometry, Ann. Math Studies, Yau, S.-T., Ed., vol. 102, Princeton University Press, 363–380, 1982.Google Scholar
  13. [13]
    Tian, G. Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Peterson-Weil metric, inMathematical aspects of string theory, Yau, S.-T., Ed., vol. 1, World Scientific, 629–646, 1987.Google Scholar
  14. [14]
    Viehweg, E.Quasi-Projective Moduli for Polarized Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1991.Google Scholar
  15. [15]
    Wong, C.-L. On the Weil-Petersson metrics and degeneration of calabi-Yau manifolds, Tech. rep., harvard University, Dec. 1996.Google Scholar
  16. [16]
    Yau, S.-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, i,.Comm. Pure. Appl. Math. 31, 339–411, (1978).MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Yeung, S.K. Compactification of Kähler manifolds with negative Ricci curvature,Invent. math. 106, 13–25, (1991).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematica Josephina, Inc. 2001

Authors and Affiliations

  • Zhiqin Lu
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew York

Personalised recommendations