Advertisement

Biologia Plantarum

, Volume 13, Issue 1, pp 100–109 | Cite as

Nativity of the macromolecule of isologous DNA as a condition for its reparative effect on radiation damage

  • Jana Šlotová
  • Z. Karpfel
  • Dagmar Kubíčková
Article
  • 13 Downloads

Abstract

The effect of isologous DNA on the course of postirradiation reparation of meristematic cells ofVicia faba primary roots was studied in detail. A considerable interest was devoted to determinations of fundamental qualitative and quantitative conditions of the above effect of isologous DNA. Main criteria of the effect were both mitotic activity of irradiated cellular population and dynamics of chromosome aberrations induced by radiation. One set of experiments compared the course of reparation as occurred in regard to applied dose of ionizing radiation in native isologous DNA, DNA denaturated by heat and degraded by DNAase, and post-irradiation reparation of induced damages was favorably affected by native isologous DNA only. Another set of results evaluated the dependence of positive reparative effect of native isologous DNA on the length of the molecule demonstrating that in the process of reparation the presence of a complete DNA macromolecule was not essential. The last experimental group was focused on observations on the dependence of the rate of native isologous DNA effect on concentration of applied solution of the macromolecule.

Keywords

Mitotic Activity Radiation Damage Deoxyribonucleic Acid Chromosome Aberration Reparative Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nativita makromolekuly isologní DNK jako podmínka jejího reparačního efektu při radiačním poškození

Abstract

Práce podrobněji studuje účinek isologní DNK na průběh postiradiační reparace meristematických buněk primárního kořeneVicia faba. Pozornost je věnována vymezení základních kvalitativních a kvantitativních podmínek uvedeného efektu isologní DNK. Jako hlavní kriteria účinku byla hodnocena jednak mitotická aktivita ozářené buněěné populace, jednak dynamika tvorby chromosomových aberací, indukovaných zářením. První serie pokusů porovnává průběh reparace v isologní DNK nativní, denaturované teplem a degradované DNasou, a to v závislosti na aplikované dávce ionizujícího zářeního. Výsledky ukázaly, že pouze isologní DNK nativní ovlivňuje příznivě postiradiační reparaci indukovaných poškození. Další serie pokusů hodnotí závislost positivního reparačního účinku nativní isologní DNK na délce její molekuly. Ukázalo se, že pro reparaci není nutná přítomnost celé makromolekuly DNK. V poslední skupině pokusů pak byla věnována pozornost závislosti míry reparačního účinku nativní isologní DNK na koncentraci aplikovaného roztoku makromolekuly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chevallier, M., Bernardi, G.: Transformation by heat-denaturated deoxyribonucleic acid. —J. mol. Biol.11: 658–660, 1965.CrossRefPubMedGoogle Scholar
  2. Dvorkin, G. A., Elpiněr, I. E.: Fizičesko-chimičeskije izměněnija dezoksiribonukleinovoj kisloty, vyzvannyje dějstvijem ultrazvukovych voln. [Physico-chemical changes of DNA induced by ultrasound waves.].—DAN SSSR134: 702–705, 1960.Google Scholar
  3. Fahmy, O. G., Fahmy, M. J.: The genetic properties of exogenous deoxyribonucleic acid at various levels of degradation inDrosophila melanogaster.—Nature207: 507–510, 1965.CrossRefPubMedGoogle Scholar
  4. Frederic, J., Corin-Frederic, J.: Modifications des chromosomes et du caryotype dans des cellules de Poulet cultivéesin vitro en presence d'acides desoxyribonucleiques de veau. —Compt. Rend. Soc. Biol.156: 742–745, 1962.Google Scholar
  5. Gray, L. H., Scholes, M. E.: The effect of ionizing radiations on the broad bean root.—Brit. J. Radiol.24: 348–392, 1951.CrossRefPubMedGoogle Scholar
  6. Kanazir, D. T., Čečuk, O. Z., Krajčinovič, B. N., Hudnik, T. A.: The recovery of X-irradiated Salmonella typhymurium by means of highly polymerized deoxyribonucleic acid. —Bull. Inst. Nucl. Sci. “Boris Kidrich”, Belgrade9: 133–144, 1959a.Google Scholar
  7. Kanazir, D., Bécarevič, A., Panjevac, B., Simič, M., Ristič, G.: Effects of highly polymerized nucleic acids and their derivatives upon the recovery of irradiated rats.—Bull. Inst. Nucl. Sci. “Boris Kidrich”, Belgrade9: 145–153, 1959b.Google Scholar
  8. Karpfel, Z., Paleček, E., Šlotová, J.: Effet des acides nucleiques et de leurs composants sur la division cellulaire.—Compt. Rend. Soc. Biol.157: 447–451, 1963.Google Scholar
  9. Karpfel, Z., Šlotová, J.: Chromosome aberrations caused by exogenous deoxyribonucleic acids. —Symp. on the Mutat. Process, Genetic Variations in Somatic Cells. Praha, 1965. Proc. Symp. pp. 127–132, 1966.Google Scholar
  10. Knight, C. A.: The nucleic acids of some strains of tobacco mosaic virus.—J. biol. Chem.197: 241–249, 1952.PubMedGoogle Scholar
  11. Marmur, J., Lane, D.: Strand separation and specific recombination in deoxyribonucleic acids: Biological studies.—Proc. Nat. Acad. Sci. (Wash.)46: 453–461, 1960.CrossRefGoogle Scholar
  12. Sung, S., Quastel, J. H.: X-irradiation of deoxyribonucleic acid.—Nature200: 781–782, 1963.CrossRefPubMedGoogle Scholar
  13. Šlotová, J., Karpfel, Z.: Comparison of the effects of radiation and deoxyribonucleic acids on the mitosis in roots ofVicia faba.—Biol. Plant.8: 10–19, 1966a.CrossRefGoogle Scholar
  14. Šlotová, J., Karpfel, Z.: Chromosome aberrations inVicia faba caused by macromolecular deoxyribonucleic acid.—Studia biophys.1: 175–182, 1966b.Google Scholar
  15. Šlotová, J., Karpfel, Z.: The influence of exogenous DNA of different origin on the mitosis and chromosomes of irradiated meristematic cells ofVicia faba.—Biol. Plant.10: 190–198. 1968.CrossRefGoogle Scholar
  16. Šlotová, J., Karpfel, Z., Kubíčková, D.: Contribution to the study on the reparative effect of exogenous DNA in the irradiated meristem ofVicia faba.—Biol. Plant.12: 327–331, 1970.CrossRefGoogle Scholar
  17. Wilczok, T., Mendecki, J.: DNA repair of radiation damage. I. Therapeutic efficiency of DNA administered to rats after whole-body irradiation.—Int. J. Rad. Biol.9: 201–203, 1965.CrossRefGoogle Scholar
  18. Wolff, S., Luippold, H. E.: Metabolism and chromosome-break rejoining.—Science122: 231–232, 1955.CrossRefPubMedGoogle Scholar
  19. Zamenhof, S., Chargaff, E.: Dissymmetry in nucleotide sequence of DNA.—J. biol. Chem.187: 1–14, 1950.PubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany 1971

Authors and Affiliations

  • Jana Šlotová
    • 1
  • Z. Karpfel
    • 1
  • Dagmar Kubíčková
    • 1
  1. 1.Institute of BiophysicsCzechoslovak Academy of SciencesBrno

Personalised recommendations