Coherent functors and families of space curves

  • Robin Hartshorne


We give a summary of Auslander's theory of coherent functors and its application to the study of flat families in projective three-space. This is joint work with M. Martin-Deschamps and D. Perrin. Full details will appear in the paper [3], [4], [5], [6].


Noetherian Ring Projective Resolution Coherent Sheaf Closed Subscheme Exact Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    AUSLANDER M., “Coherent functors”, Proc. Conf. Categorial Algebra, La Jolla 1965, Springer, New York (1966), 189–231.Google Scholar
  2. [2]
    HARTSHORNE R., “Algebraic Geometry”, Springer, New York (1977)MATHGoogle Scholar
  3. [3]
    HARTSHORNE R., “Coherent functors”, Advances in Math.140 (1998) 44–94MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    HARTSHORNE R., MARTIN-DESCHAMPS M., PERRIN D., “Un Theoreme de Rao pour les families de courbes gauches” (to appear) J. of AlgebraGoogle Scholar
  5. [5]
    HARTSHORNE R., MARTIN-DESCHAMPS M., PERRIN D., “Construction de familles minimales de courbes gauches”, (to appear) Pacific J. of Math.Google Scholar
  6. [6]
    HARTSHORNE R., MARTIN-DESCHAMPS M., PERRIN D., “Triades et familles de courbes gauches”, (to appear) Math. AnnalenGoogle Scholar
  7. [7]
    MARTIN-DESCHAMPS M., PERRIN D., “Sur la classification des courbes gauches”, Asterisque184–185 (1990)Google Scholar
  8. [8]
    RAO A.P., “Liaison among curves in3”, Invent. Math.50 (1979), 205–217MATHCrossRefGoogle Scholar
  9. [9]
    RAO A.P., “Liaison equivalence classes”, Math. Ann.258 (1981), 169–173MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1997

Authors and Affiliations

  • Robin Hartshorne
    • 1
  1. 1.Università di California BerkeleyBerkeleyUSA

Personalised recommendations