Advertisement

Biologia Plantarum

, Volume 35, Issue 3, pp 341–348 | Cite as

Changes in fatty acids contents and growth characteristics in transformed oilseed rape (Brassica napus)

  • J. DusbÁbkovÁ
  • I. BohÁČOVÁ
  • L. BezecnÁ
  • M. KonrÁdovÁ
  • J. neČÁsek
Article

Abstract

Spring oilseed rapeBrassica napus L. ssp.oleifera cv. HM-81 was transformed with TL-DNA of the Ri plasmid of the agropine strainAgrobacterium rhizogenes 15834. Selfed progenies (R2 and R3 generations) were studied for changes in values of growth characteristics and fatty acids contents. Transformants are ‘homozygous’ for TL-DNA. Both generations of transformants differed significantly from the nontransformed control plants in reduced length, lower number of pods per plant, lower total mass of seeds and the higher number of branches. The contents of palmitic, linoleic and linolenic acids were significantly higher in transformants when compared with the control. On the contrary, the contents of both stearic and oleic acids were in most of transformants significantly lower. Only traces of erucic acid (less than 0.05 % ) were found, both in transformed and nontransformed plants.

Keywords

Fatty Acid Content Brassica Napus Oilseed Rape Erucic Acid Agrobacterium Rhizogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldo, M., Baszczynski, C.L., Bellemare, G., Brown, G., Carlson, J., Gillespie, B., Huang, B., MacLean, N., MacRae, W.D., Rayner, G., Rozakis, S., Westecott, M., Kemble, R.J.: Evaluation of transgenic canola plants under field conditions. - Genome35: 58–63, 1992.PubMedGoogle Scholar
  2. Bezecná, L , Tenkl, L : Some remarks to the rapid methods for an estimation of erucic acid and glukosinolates for winter rapeseeds. - In: 7 International Rapeseed Congress. Pp. 1520–1526. Poznaň 1987.Google Scholar
  3. Dusbábková, J., Nečásek, J., Hrouda, M.: [Transformation of oilseed rape with T-DNA ofAgrobacterium plasmids] - Genet. Šiecht. (Praha)25: 1–9, 1989. [In Czech]Google Scholar
  4. Dusbábková, J., Nečásek, J., Hrouda, M, Doležel, J., Hart, M.: Seggregation in the progeny of transformed rapeseed(Brassica napus). -Biol. Plant.34: 53–61, 1992.CrossRefGoogle Scholar
  5. Fladung, M.: Transformation of diploid and tetraploid potato clones with therolC gene ofAgrobacterium rhizogenes characterization and of transgenic plants. - Plant Breed.104: 295–304, 1990.CrossRefGoogle Scholar
  6. Guerche, P., Jouanin, L., Tepfer, D., Pelletier, G.: Genetic transformation of oilseed rape(Brassica napus) by the Ri T-DNA ofAgrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. - Mol. gen. Genet.206: 382–386, 1987.CrossRefGoogle Scholar
  7. Hougen, F.W., Bodo, V.: Extraction and methanolysis of oil from whole or crushed rapeseed for fatty acid analysis. - J. amer. Oil Chem. Soc.50: 230–234, 1973.CrossRefGoogle Scholar
  8. Hrouda, M., Dusbábková, J., Nečásek, J.: Detection of Ri T-DNA in transformed oilseed rape regenerated from hairy roots. - Biol. Plant.30: 234–236, 1988.CrossRefGoogle Scholar
  9. Mayo, O.: The Theory of Plant Breeding. - Clarendon Press, Oxford 1987.Google Scholar
  10. Ooms, G., Bains, A., Karp, A., Twell, D., Wilcox, E.: Genetic manipulation in cultivars of oilseed rape (Brassica napus) usingAgrobacterium. - Theor. appl. Genet.71: 325–329, 1985.Google Scholar
  11. Oono, Y., Kanaya, K., Uchimiya, H.: Early flowering in transgenic plants possessing therolC gene ofAgrobacterium rhizogenes Ri plasmid. - Jap. J.Genet.65: 7–16, 1990.CrossRefGoogle Scholar
  12. Pleines, S., Friedt,W.: Breeding for improved C 18-fatty acids composition in rapeseed(Brassica napus L). - Fat Sci. Technol.90: 167–171, 1988.Google Scholar
  13. Roth, Z., Jozífko, M., Malý, V., Trčka, V.: Statistickě Metody v Experimentální Medicíně. [Statistic Methods in Experimental Medicine.] - SZN, Praha 1962. [In Czech.]Google Scholar
  14. Roy, N.N., Tarr, A.W.: Prospects for the development of rapeseed(Brassica napus L.) with improved linoleic and linolenic acid content. - Plant Breed.98: 89–96, 1987.CrossRefGoogle Scholar
  15. Schmülling, T., Schell, J., Spena, A.: Single genes fromAgrobacterium rhizogenes influence plant development. - EMBO J.7: 2621–2629, 1988.PubMedGoogle Scholar
  16. Schmülling, T., Schell, J., Spena, A.: Promoters of therolA, B andC genes ofAgrobacterium rhizogenes are differentially regulated in transgenic plants. - Plant Cell1: 665–670, 1989.PubMedCrossRefGoogle Scholar
  17. Špak, J., Dusbábková, J., Kubelková, D, Nečasek, J.: Resistance of transformed and non-transformed oilseed rape cv. HM-81 to the infection with cauliflower mosaic, turnip yellow mosaic and turnip mosaic viruses. -Biol. Plant.33: 234–239, 1991.CrossRefGoogle Scholar
  18. Spano L., Costantino, P.: Regeneration of plants from callus cultures of roots induced byAgrobacterium rhizogenes on tobacco. - Z. Pflanzenphysiol.106: 87–92, 1982.Google Scholar
  19. Tepfer, D.: Transformation of several species of higher plants byAgrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. - Cell37: 959–967, 1984.PubMedCrossRefGoogle Scholar
  20. Thompson, R.F.: Breeding winter oilseed rape(Brassica napus). - Adv. appl. Bot.7: 1–104, 1983.Google Scholar
  21. Weber, E.: Gründriss der biologischen Statistik. 5Ed. - Fischer Verlag, Jena 1964.Google Scholar
  22. White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P., Nester, E.W.: Molecular and genetic analysis of the transformed DNA regions of the root inducing plasmid ofAgrobacterium rhizogenes. - J. Bacteriol.164: 33–44, 1985.PubMedGoogle Scholar
  23. Zaher, F.A.: Vegetable oil as alternative fuel for diesel engines. - Grasas Aceites90: 82–91, 1990.Google Scholar

Copyright information

© Institute of Experimental Botany 1993

Authors and Affiliations

  • J. DusbÁbkovÁ
    • 1
  • I. BohÁČOVÁ
    • 2
  • L. BezecnÁ
    • 2
  • M. KonrÁdovÁ
    • 2
  • J. neČÁsek
    • 1
  1. 1.Institute of Plant Molecular BiologyAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic
  2. 2.Plant Breeding StationSempraSlapy near TáborCzech Republic

Personalised recommendations