Folia Microbiologica

, 4:167 | Cite as

A proteolytic system in growing and non-growing cells ofEscherichia coli

  • J. Chaloupka
  • J. Liebster


  1. (1)

    Escherichia coli cells contain a protease system splitting its own proteins as well as casein labelled with131I at a slightly alkaline pH. The rate of proteolysis is not markedly influenced by ethylenediaminotetraacetic acid or by iodoacetic acid, p-chlormercuribenzoate diminishes the rate of hydrolysis of131I casein but its effect cannot be reversed by cysteine.

  2. (2)

    The proteolytic system is not present in the cells in the form of an enzymogen and its activity is not diminished even after 55 passages on a synthetic medium containing ammonium chloride as the sole nitrogen source.

  3. (3)

    In living cells proteins labelled with36S methionine are degraded at a rate not exceeding 0.2%/hr. at 29–30°, both in a growing culture and in the normal stationary phase. Similarly, the protease activity in cell-free extracts does not fundamentally change in the course of development of the culture.

  4. (4)

    Proteins in extracts are split at a rate of 1.8–2.3%/hr. at 32° according to results based on colorimetric estimations with tyrosine, or at a rate of 1.1–1.3%/hr, at 32° as shown by the course of degradation of35S proteins. No resynthesis of proteins from liberated amino acids took place in the extracts under the described experimental conditions.

  5. (5)

    The decomposition of labelled proteins in cell-free systems was stimulated by dinitrophenol and sodium azide.



Synthetic Medium Dinitrophenol Proteolytic System Iodoacetic Acid Ehrlich Ascites Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Протеолитической си стемы растет и не рас тет клеток Escherichia титр


  1. (1)

    Escherichia титр клетки содер жат протеазы Система разделения собственных белков в качестве равно как казеин с символикой (вс131) Я на несколько ще лочного рН. Темпы про теолиза не заметно влияют ethylenediaminotetraacetic кислоту или iodoacetic кисло та, п-chlormercuribenzoate снижает темп ы гидролиза (su131) Я казеи н, но ее эффект не може т быть отменено цист еина.

  2. (2)

    Протеолитической с истеме нет в клетках в виде enzymogen и ее деятельн ость не уменьшилась даже после 55 проходов по синтетическим ср едних хлористого ам мония, содержащий в качестве единственн ым источником азота.

  3. (3)

    В живых клетках белк ов с символикой (su36)S мет ионин являются дегр адировавших в разме ре, не превышает 0, 2% / час. на 29-30 °, как в растущей к ультуре и в нормальн ых стационарного эт апа. Точно так же, прот еазы деятельность в камере без выдержки не в корне изменить ход развитие культуры.

  4. (4)

    Белки в выписках дел ятся на темпы 1.8-2.3% / час. на 32 ° по на основе резуль татов оценки колори метрических с тироз ин, или по курсу 1.1-1.3% / ч, пр и 32 °, как показано на Конечно деградации (su35)S белков. Нет resynthesis белко в из освобожденных а мино кислот проходи л в соответствии с эк страктами описание экспериментальных условиях.

  5. (5)

    Разложение называю т белки в клетке своб одных систем стимул ируется dinitrophenol и натрия азид.



  1. Chaloupka, J., Liebster, J., Janeček, J.:The use of labelled substrates for the study of intracellular proteases. 2nd Conf. on the Peaceful Use of Atomic Energy, Geneva 1958, 15(P)2125.Google Scholar
  2. Cowie, D. Bolton, E. T., Sands, M. K.:Sulphur metabolism in Escherichia coli. I. J. Bact. 60: 233, 1950.PubMedGoogle Scholar
  3. Drummond, E., Sewell, E. E., Skinner, L. G.:Reticulocyte enzymes and protein synthesis. Nature 177: 190, 1956.Google Scholar
  4. Fodor, P. J., Funk, C., Tomashefsky, P.:Enzyme level in the growing and spontaneously regressing (Flexner) Jobling carcinoma. I. Arch. Biochem. Biophys. 56: 281, 1955.CrossRefGoogle Scholar
  5. Folin, O., Ciocalteu, V.:Tyrosine and tryptophan determination in proteins. J. Biol. Chem. 73: 627, 1927.Google Scholar
  6. Forssberg, A., Révész, L.:A study of the metabolic state of proteins in the cells of two ascites tumors. Biochim. Biophys. Acta 25: 165, 1957.PubMedCrossRefGoogle Scholar
  7. Foster, J. W., Perry, J. J.:Intracellular events occurring during endotrophic sporulation in Bacillus mycoides. J. Bact. 67: 295, 1954.PubMedGoogle Scholar
  8. Greenbaum, A. L., Greenwood, F. C.:Some enzymic changes in the mammary gland of rats during pregnancy, lactation and mammary involution. Biochem. J. 56: 625, 1954.PubMedGoogle Scholar
  9. Halvorson, H.:Protein turnover in yeast. Bact. Proc. 1957, p. 136.Google Scholar
  10. Halvorson, H.:Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim. Biophys. Acta 27: 255, 1958a.PubMedCrossRefGoogle Scholar
  11. Halvorson, H.:Studies on protein and nucleic acid turnover in growing cultures of yeast. Biochim. Biophys. Acta 27: 267, 1958b.PubMedCrossRefGoogle Scholar
  12. Halvorson, H. O., Spiegelman, S.:Net utilization of free amino acids during the induced synthesis of maltozymase in yeast. J. Bact. 65: 601, 1953.PubMedGoogle Scholar
  13. Harris, H., Wats, J. W.:Turnover of protein in a non-multiplying animal cell. Nature 181: 1582, 1958.PubMedCrossRefGoogle Scholar
  14. Heimberg, M., Velick, S. F.:The synthesis of aldolase and phosphorylase in rabbits. J. Biol. Chem. 208: 725, 1954.PubMedGoogle Scholar
  15. Hogness, D. S., Cohn, M., Monod, J.:Studies on the induced synthesis of β-galactosidase in Escherichia coli. The kinetics and mechanism of sulphur incorporation. Biochim. Biophys. Acta 16: 99, 1955.PubMedCrossRefGoogle Scholar
  16. Hughes, D. E.:A press for disrupting bacteria and other micro-organisms. Brit. J. Exp. Path. 32: 97, 1951.PubMedGoogle Scholar
  17. Iakovlev, N. N.:Concerning the influence of phosphate on tissus proteolysis. Fiziol. Zh. USSR 35: 236, 1949.Google Scholar
  18. Koch, A. L., Levy, R. H.:Protein turnover in growing cultures of Escherichia coli. J. Biol. Chem. 217:: 947, 1955.PubMedGoogle Scholar
  19. Korner, A., Tarver, H.:Studies on protein synthesis in vitro. VI. Incorporation and release of amino acids in particulate preparations from livers of rats. J. Gen. Physiol. 41: 219, 1957.PubMedCrossRefGoogle Scholar
  20. Mandelstam, J.:The free amino acid pool of gramnegative bacteria and its relation to different enzyme-forming system in the same organism. Résumés commun. 3e Congr. biochem., Brussels, p. 98, 1955.Google Scholar
  21. Mandelstam, J.:Turnover of protein in Escherichia coli. Biochem. J. 64: 55 P, 1956.Google Scholar
  22. Mandelstam, J.:Turnover of protein in starved bacteria and its relation to the induced synthesis of enzyme. Nature 179: 1179, 1957.PubMedCrossRefGoogle Scholar
  23. Mandelstam, J.:The free amino acids in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 103, 1958a.PubMedGoogle Scholar
  24. Mandelstam, J.:Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 110, 1958b.PubMedGoogle Scholar
  25. Melchior, J. Klioze, O., Klotz, I.:Further studies of the synthesis of protein by Escherichia coli. J. Biol. Chem. 189: 411, 1951.PubMedGoogle Scholar
  26. Moldave, K.:Intracellular protein metabolism in Ehrlich ascites carcinoma cells. J. Biol. Chem. 221: 543, 1956.PubMedGoogle Scholar
  27. Monod, J. Cohn, M.:Sur le mécanisme de la synthése d’une protéine bactérienne. Symposium on microbial metabolism. VIth Int. Congr. Microbiol., Roma, p. 42, 1953.Google Scholar
  28. Norberg, B.:Proteins in regenerating rat liver. II. Proteolytic enzymes. Acta Physiol. Scand. 20: 180, 1950.PubMedCrossRefGoogle Scholar
  29. Ogur, M., Rosen, G.:The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch. Biochem. 25: 262, 1950.PubMedGoogle Scholar
  30. Podolsky, R. J.:Protein degradation in bacteria. Arch. Biochem. Biophys. 45: 327, 1953.PubMedCrossRefGoogle Scholar
  31. Robinson, E.:Proteolytic enzymes in growing root cells. Exp. Bot. 7: 296, 1956.CrossRefGoogle Scholar
  32. Rotman, B. Spiegelman, S.:On the origin of the carbon in the induced synthesis of β-galactosidase in Escherichia coli. J. Bact. 68: 419, 1954.PubMedCrossRefGoogle Scholar
  33. Rothshild, H., Junqueira, L. C. M.:The possible correlation between cathepsin activity and protein synthesis. Arch. Biochem. Bipohys. 34: 453, 1951.CrossRefGoogle Scholar
  34. Schoenheimer, R.:The dynamic state of body constituents. Harvard Univ. Press, Cambridge, Mass., 1942.Google Scholar
  35. Shemin, D., Rittenberg, D.:Some interrelationships in general nitrogen metabolism. J. Biol. Chem. 153: 401, 1944.Google Scholar
  36. Simpson, M. V.:The release of labelled amino acids from the proteins of rat liver slices. J. Biol. Chem. 201: 143, 1953.PubMedGoogle Scholar
  37. Simpson, M. V., Velick, S. F.:The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit. J. Biol. Chem. 208: 61, 1954.PubMedGoogle Scholar
  38. Steinberg, D., Vaughan, M.:Intracellular protein degradation in vitro. Biochim. Biophys. Acta 19: 584, 1956a.PubMedCrossRefGoogle Scholar
  39. Steinberg, D., Vaughan, M.:Observations on intracellular protein catabolism. Arch. Biochem. Biophys. 65: 93, 1956b.PubMedCrossRefGoogle Scholar
  40. Sylven, Tobias, C, A.:Cyclic variations in the peptidase and proteinase activity of growing yeast synchronized with respect to cell multiplication. IVth Int. Congr. Biochem., Vienna, Abstr. of Commun, p. 4, 1958.Google Scholar
  41. Virtanen, A. J., Winkler, U.:Effect of decrease in the protein content of cells on the proteolytic enzyme system. Acta Chem. Scand. 3: 272, 1949.CrossRefGoogle Scholar
  42. Weber, R.:On the biological function of cathepsin in tail tissue of Xenopus larvae. Experientia 13: 153, 1957.PubMedCrossRefGoogle Scholar
  43. Wickerham, L. J.:Evidence of the production of extracellular invertase by certain strains of yeasts. Arch. Biochem. Biophys. 76: 439, 1958.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1959

Authors and Affiliations

  • J. Chaloupka
    • 1
  • J. Liebster
    • 1
  1. 1.Department of Microbiology and Isotope Laboratory, Institute of BiologyCzechoslovak Academy of Sciences

Personalised recommendations