Skip to main content
Log in

A proteolytic system in growing and non-growing cells ofEscherichia coli

Протеолитической си стемы растет и не рас тет клеток Escherichia титр

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Summary

  1. (1)

    Escherichia coli cells contain a protease system splitting its own proteins as well as casein labelled with131I at a slightly alkaline pH. The rate of proteolysis is not markedly influenced by ethylenediaminotetraacetic acid or by iodoacetic acid, p-chlormercuribenzoate diminishes the rate of hydrolysis of131I casein but its effect cannot be reversed by cysteine.

  2. (2)

    The proteolytic system is not present in the cells in the form of an enzymogen and its activity is not diminished even after 55 passages on a synthetic medium containing ammonium chloride as the sole nitrogen source.

  3. (3)

    In living cells proteins labelled with36S methionine are degraded at a rate not exceeding 0.2%/hr. at 29–30°, both in a growing culture and in the normal stationary phase. Similarly, the protease activity in cell-free extracts does not fundamentally change in the course of development of the culture.

  4. (4)

    Proteins in extracts are split at a rate of 1.8–2.3%/hr. at 32° according to results based on colorimetric estimations with tyrosine, or at a rate of 1.1–1.3%/hr, at 32° as shown by the course of degradation of35S proteins. No resynthesis of proteins from liberated amino acids took place in the extracts under the described experimental conditions.

  5. (5)

    The decomposition of labelled proteins in cell-free systems was stimulated by dinitrophenol and sodium azide.

Abstract

  1. (1)

    Escherichia титр клетки содер жат протеазы Система разделения собственных белков в качестве равно как казеин с символикой (вс131) Я на несколько ще лочного рН. Темпы про теолиза не заметно влияют ethylenediaminotetraacetic кислоту или iodoacetic кисло та, п-chlormercuribenzoate снижает темп ы гидролиза (su131) Я казеи н, но ее эффект не може т быть отменено цист еина.

  2. (2)

    Протеолитической с истеме нет в клетках в виде enzymogen и ее деятельн ость не уменьшилась даже после 55 проходов по синтетическим ср едних хлористого ам мония, содержащий в качестве единственн ым источником азота.

  3. (3)

    В живых клетках белк ов с символикой (su36)S мет ионин являются дегр адировавших в разме ре, не превышает 0, 2% / час. на 29-30 °, как в растущей к ультуре и в нормальн ых стационарного эт апа. Точно так же, прот еазы деятельность в камере без выдержки не в корне изменить ход развитие культуры.

  4. (4)

    Белки в выписках дел ятся на темпы 1.8-2.3% / час. на 32 ° по на основе резуль татов оценки колори метрических с тироз ин, или по курсу 1.1-1.3% / ч, пр и 32 °, как показано на Конечно деградации (su35)S белков. Нет resynthesis белко в из освобожденных а мино кислот проходи л в соответствии с эк страктами описание экспериментальных условиях.

  5. (5)

    Разложение называю т белки в клетке своб одных систем стимул ируется dinitrophenol и натрия азид.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chaloupka, J., Liebster, J., Janeček, J.:The use of labelled substrates for the study of intracellular proteases. 2nd Conf. on the Peaceful Use of Atomic Energy, Geneva 1958, 15(P)2125.

  • Cowie, D. Bolton, E. T., Sands, M. K.:Sulphur metabolism in Escherichia coli. I. J. Bact. 60: 233, 1950.

    PubMed  CAS  Google Scholar 

  • Drummond, E., Sewell, E. E., Skinner, L. G.:Reticulocyte enzymes and protein synthesis. Nature 177: 190, 1956.

    Google Scholar 

  • Fodor, P. J., Funk, C., Tomashefsky, P.:Enzyme level in the growing and spontaneously regressing (Flexner) Jobling carcinoma. I. Arch. Biochem. Biophys. 56: 281, 1955.

    Article  CAS  Google Scholar 

  • Folin, O., Ciocalteu, V.:Tyrosine and tryptophan determination in proteins. J. Biol. Chem. 73: 627, 1927.

    CAS  Google Scholar 

  • Forssberg, A., Révész, L.:A study of the metabolic state of proteins in the cells of two ascites tumors. Biochim. Biophys. Acta 25: 165, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Foster, J. W., Perry, J. J.:Intracellular events occurring during endotrophic sporulation in Bacillus mycoides. J. Bact. 67: 295, 1954.

    PubMed  CAS  Google Scholar 

  • Greenbaum, A. L., Greenwood, F. C.:Some enzymic changes in the mammary gland of rats during pregnancy, lactation and mammary involution. Biochem. J. 56: 625, 1954.

    PubMed  CAS  Google Scholar 

  • Halvorson, H.:Protein turnover in yeast. Bact. Proc. 1957, p. 136.

  • Halvorson, H.:Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim. Biophys. Acta 27: 255, 1958a.

    Article  PubMed  CAS  Google Scholar 

  • Halvorson, H.:Studies on protein and nucleic acid turnover in growing cultures of yeast. Biochim. Biophys. Acta 27: 267, 1958b.

    Article  PubMed  CAS  Google Scholar 

  • Halvorson, H. O., Spiegelman, S.:Net utilization of free amino acids during the induced synthesis of maltozymase in yeast. J. Bact. 65: 601, 1953.

    PubMed  CAS  Google Scholar 

  • Harris, H., Wats, J. W.:Turnover of protein in a non-multiplying animal cell. Nature 181: 1582, 1958.

    Article  PubMed  CAS  Google Scholar 

  • Heimberg, M., Velick, S. F.:The synthesis of aldolase and phosphorylase in rabbits. J. Biol. Chem. 208: 725, 1954.

    PubMed  CAS  Google Scholar 

  • Hogness, D. S., Cohn, M., Monod, J.:Studies on the induced synthesis of β-galactosidase in Escherichia coli. The kinetics and mechanism of sulphur incorporation. Biochim. Biophys. Acta 16: 99, 1955.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, D. E.:A press for disrupting bacteria and other micro-organisms. Brit. J. Exp. Path. 32: 97, 1951.

    PubMed  CAS  Google Scholar 

  • Iakovlev, N. N.:Concerning the influence of phosphate on tissus proteolysis. Fiziol. Zh. USSR 35: 236, 1949.

    Google Scholar 

  • Koch, A. L., Levy, R. H.:Protein turnover in growing cultures of Escherichia coli. J. Biol. Chem. 217:: 947, 1955.

    PubMed  CAS  Google Scholar 

  • Korner, A., Tarver, H.:Studies on protein synthesis in vitro. VI. Incorporation and release of amino acids in particulate preparations from livers of rats. J. Gen. Physiol. 41: 219, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Mandelstam, J.:The free amino acid pool of gramnegative bacteria and its relation to different enzyme-forming system in the same organism. Résumés commun. 3e Congr. biochem., Brussels, p. 98, 1955.

  • Mandelstam, J.:Turnover of protein in Escherichia coli. Biochem. J. 64: 55 P, 1956.

  • Mandelstam, J.:Turnover of protein in starved bacteria and its relation to the induced synthesis of enzyme. Nature 179: 1179, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Mandelstam, J.:The free amino acids in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 103, 1958a.

    PubMed  CAS  Google Scholar 

  • Mandelstam, J.:Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69: 110, 1958b.

    PubMed  CAS  Google Scholar 

  • Melchior, J. Klioze, O., Klotz, I.:Further studies of the synthesis of protein by Escherichia coli. J. Biol. Chem. 189: 411, 1951.

    PubMed  CAS  Google Scholar 

  • Moldave, K.:Intracellular protein metabolism in Ehrlich ascites carcinoma cells. J. Biol. Chem. 221: 543, 1956.

    PubMed  CAS  Google Scholar 

  • Monod, J. Cohn, M.:Sur le mécanisme de la synthése d’une protéine bactérienne. Symposium on microbial metabolism. VIth Int. Congr. Microbiol., Roma, p. 42, 1953.

  • Norberg, B.:Proteins in regenerating rat liver. II. Proteolytic enzymes. Acta Physiol. Scand. 20: 180, 1950.

    Article  PubMed  CAS  Google Scholar 

  • Ogur, M., Rosen, G.:The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch. Biochem. 25: 262, 1950.

    PubMed  CAS  Google Scholar 

  • Podolsky, R. J.:Protein degradation in bacteria. Arch. Biochem. Biophys. 45: 327, 1953.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, E.:Proteolytic enzymes in growing root cells. Exp. Bot. 7: 296, 1956.

    Article  CAS  Google Scholar 

  • Rotman, B. Spiegelman, S.:On the origin of the carbon in the induced synthesis of β-galactosidase in Escherichia coli. J. Bact. 68: 419, 1954.

    Article  PubMed  CAS  Google Scholar 

  • Rothshild, H., Junqueira, L. C. M.:The possible correlation between cathepsin activity and protein synthesis. Arch. Biochem. Bipohys. 34: 453, 1951.

    Article  Google Scholar 

  • Schoenheimer, R.:The dynamic state of body constituents. Harvard Univ. Press, Cambridge, Mass., 1942.

    Google Scholar 

  • Shemin, D., Rittenberg, D.:Some interrelationships in general nitrogen metabolism. J. Biol. Chem. 153: 401, 1944.

    CAS  Google Scholar 

  • Simpson, M. V.:The release of labelled amino acids from the proteins of rat liver slices. J. Biol. Chem. 201: 143, 1953.

    PubMed  CAS  Google Scholar 

  • Simpson, M. V., Velick, S. F.:The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit. J. Biol. Chem. 208: 61, 1954.

    PubMed  CAS  Google Scholar 

  • Steinberg, D., Vaughan, M.:Intracellular protein degradation in vitro. Biochim. Biophys. Acta 19: 584, 1956a.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, D., Vaughan, M.:Observations on intracellular protein catabolism. Arch. Biochem. Biophys. 65: 93, 1956b.

    Article  PubMed  CAS  Google Scholar 

  • Sylven, Tobias, C, A.:Cyclic variations in the peptidase and proteinase activity of growing yeast synchronized with respect to cell multiplication. IVth Int. Congr. Biochem., Vienna, Abstr. of Commun, p. 4, 1958.

  • Virtanen, A. J., Winkler, U.:Effect of decrease in the protein content of cells on the proteolytic enzyme system. Acta Chem. Scand. 3: 272, 1949.

    Article  CAS  Google Scholar 

  • Weber, R.:On the biological function of cathepsin in tail tissue of Xenopus larvae. Experientia 13: 153, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Wickerham, L. J.:Evidence of the production of extracellular invertase by certain strains of yeasts. Arch. Biochem. Biophys. 76: 439, 1958.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Our thanks are due to Miss O. Civínová, Mrs. M. Oppeltová, Mr. J. Kozel and Mr. Ch. Chroméc for technical co-operation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaloupka, J., Liebster, J. A proteolytic system in growing and non-growing cells ofEscherichia coli . Folia Microbiol 4, 167–175 (1959). https://doi.org/10.1007/BF02927936

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02927936

Keywords

Navigation