Advertisement

Journal of Genetics

, Volume 73, Issue 1, pp 17–32 | Cite as

PDC2, a yeast gene essential for synthesis of pyruvate decarboxylase, encodes a novel transcription factor

  • V. Raghuram
  • Z. Lobo
  • P. K. Maitra
Article

Abstract

A positive regulatory genePDC2 required for expression of the enzyme pyruvate decarboxylase (PDC) in the yeastSaccharomyces cerevisiae has been identified and cloned. Thepdc2 mutant lacks pyruvate decarboxylase activity and is unable to grow on a medium containing glucose.PDC2 disruptants are viable on ethanol. ThePDC2 gene product is essential for transcription ofPDC1 andPDC5, the structural genes of pyruvate decarboxylase. ThePDC2 gene codes for a low-abundance mRNA of approximately 2.8 kb. Transformation of a wild-type strain with multiple copies of the promoter ofPDC1 leads to decreased pyruvate decarboxylase activity, presumably owing to titration oftrans-acting factors. Normal activity is restored by multiple copies ofPDC2, implicating involvement ofPDC2 in transcription ofPDC1. The deducedPDC2 protein (Pdc2p) sequence contains 925 amino acids, and is rich in asparagine and serine. We fused the DNA sequence encoding the N-terminal domain of Gal4p to the sequence encoding the C-terminal of Pdc2p; the hybrid protein (Gal4-Pdc2p) was able to activate transcription of theGAL1-lucZ fusion gene. The active domain consists of an unusual structure with a strikingly high asparagine content. We propose that this asparagine-rich domain represents a novel structural motif for transcriptional activation.PDC2 maps on chromosome IV betweencdc34 andarol; PDC1 is on the left arm of chromosome XII, linked topprl.

Keywords

Pyruvate decarboxylase gene expression transcription factor asparagine-rich box Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altslml S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. 1990 Basic local alignment search tool.J. Mol. Biol. 215: 403–410Google Scholar
  2. Baker H. V. 1986 Glycolytic gene expression inSaccharomyces cerevisiae: Nucleotide sequence ofGCR1 null mutants, and evidence for expression.Mol. Cell. Biol. 6: 3774–3784PubMedGoogle Scholar
  3. Baker H. V. 1991GCR1 ofSaccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif.Proc. Natl. Acad. Sci. USA 88: 9443–9447PubMedCrossRefGoogle Scholar
  4. Berger S. L., Pina B., Silverman N., Marcus G. A., Agapite J., Reiger J. L., Triezenberg S. J. and Guarente L. 1992 Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains.Cell 70: 251–265PubMedCrossRefGoogle Scholar
  5. Bitter G. A., Chang K. K. H. and Egan K. M. 1991 A multi-component upstream activation sequence of theSaccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter.Mol. Gen. Genet. 231: 22–32PubMedCrossRefGoogle Scholar
  6. Brindle P. K., Holland J. P., Willet C. E., Innis M. A. and Holland M. J. 1990 Multiple factors bind the upstream activation sites of the yeast enolase genesEN01 andENO2: ABFI protein, like repressor activator protein RAP1, bindscis-acting sequences which modulate repression or activation of transcription.Mol. Cell. Biol. 10: 4872–4885PubMedGoogle Scholar
  7. Buchman A., Kimberly W. J., Rhine J. and Kornberg R. D. 1988a Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences and telomers inSaccharomyces cerevisiae.Mol. Cell. Biol. 8: 210–225PubMedGoogle Scholar
  8. Buchman A. R., Lue N. F. and Kornberg R. D. 1988b Connections between transcriptional activators, silencers, and telomers as revealed by functional analysis of yeast DNA-binding protein.Mol. Cell. Biol. 8: 5086–5099PubMedGoogle Scholar
  9. Butler G., Dawes I. W. and McConnell D. J. 1990 TUF factor binds to the upstream region of the pyruvale decarboxylase structural genePDC1 ofSaccharomyces cerevisiae.Mol. Gen. Genet. 223: 449–456PubMedCrossRefGoogle Scholar
  10. Butler G. and McConnell D. J. 1988 Identification of an upstream activation site in the pyruvale decarboxylase structural genePDC1 ofSaccharomyces cerevisiae.Curr. Genet. 14: 405–412PubMedCrossRefGoogle Scholar
  11. Chasman D. I., Lue N. F., Buchman A. R., LaPointe J. W., Lorch Y. and Kornberg R. D. 1990 A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator.Genes Dev. 4: 503–514PubMedCrossRefGoogle Scholar
  12. Chien C. T., Bartel P. L., Sternglanz R. and Fields S. 1991 The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest.Proc. Natl. Acad. Sci. USA 87: 9578–9582CrossRefGoogle Scholar
  13. Clifton D. and Fraenkel D. G. 1981 Thegcr (glycolysis regulation) mutation ofSaccharomyces cerevisiae.J. Biol. Chem. 256: 13074–13078PubMedGoogle Scholar
  14. Clifton D., Weinstock S. B. and Fraenkel D. G. 1978 Glycolysis mutants inSaccharomyces cerevisiae.Genetics 88: 1–11PubMedGoogle Scholar
  15. Cohen R., Holland J. P. and Holland A. E. P. M. J. 1987 Transcription of the constitutively expressed yeast enolase geneENO1 is mediated by positive and negativecis-acting regulatory sequences.Mol. Cell. Biol. 7: 2753–2761PubMedGoogle Scholar
  16. Courey A. J. and Tjian R. 1988 Analysis of Splin vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif.Cell 55: 887–898PubMedCrossRefGoogle Scholar
  17. Hanahan D. 1983 Studies on transformation ofE. coli with plasmids.J. Mol. Biol. 166: 557–580PubMedCrossRefGoogle Scholar
  18. Henry S. A., Donahue T. F. and Culbertson M. R. 1975 Selection of spontaneous mutants by inositol starvation in yeast.Mol. Gen. Genet. 143: 5–11PubMedCrossRefGoogle Scholar
  19. Hinnen A., Hicks J. B. and Fink G. R. 1978 Transformation of yeast.Proc. Natl. Acad. Sci. USA 75: 1929–1933PubMedCrossRefGoogle Scholar
  20. Hohmann S. 1991 Characterization ofPDC6, a third structural gene for pyruvate decarboxylase inSaccharomyces cerevisiae.J. Bacteriol. 173: 7963–7969PubMedGoogle Scholar
  21. Hohmann S. 1993 Characterization ofPDC2, a gene necessary for the. high level expression of pyruvate decarboxylase structural genes inSaccharomyces cerevisiae.Mol. Gen. Genet. 241: 657–666PubMedCrossRefGoogle Scholar
  22. Hohmann S. and Cederberg H. 1990 Autoregulation may control the expression of pyruvate decarboxylase structural genesPDC1 andPDC5.Eur. J. Biochem. 188: 615–621PubMedCrossRefGoogle Scholar
  23. Holland M. J., Yokoi T., Holland J. P., Myambo K. and Innis M. A. 1987 TheGCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraklehyde-3-phosphate dehydrogenase gene families inSaccharomyces cerevisiae.Mol. Cell. Biol. 7: 813–820PubMedGoogle Scholar
  24. Hope I. A. and Struhl K. 1986 Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast.Cell 46: 885–894PubMedCrossRefGoogle Scholar
  25. Huet J., Cottrelle P., Cool M. L., Thiele D., Marck C., Buhler J., Sentenac A. and Fromageot P. 1985 A general upstream binding factor for genes of the yeast translational apparatus.EMBO J. 4: 3539–3547PubMedGoogle Scholar
  26. Huie M. A., Scott E. W., Drazinic C. M., Lopez M. C., Hornstra I. K., Yang T. P. and Baker H. V. 1992 Characterization of the DNA-binding activity of GCR1: In vivo evidence for two GCRl-binding sites in the upstream activation sequence ofTP1 ofSaccharomyces cerevisiae.Mol. Cell. Biol. 12: 2690–2700PubMedGoogle Scholar
  27. Ito H., Jukucla Y., Murata K. and Kimura A. 1983 Transformation of intact yeast cells treated with alkali cations.J. Bacteriol. 153: 163–168PubMedGoogle Scholar
  28. Kellermann E. and Hollenberg C. P. 1988 The glucose and ethanol-dependent regulation ofPDC1 fromSaccharomyces cerevisiae are controlled by two distinct promoter regions.Curr. Genet. 14: 337–344PubMedCrossRefGoogle Scholar
  29. Kim J.-H. and Powers S. 1991 Overexpression of RPI1, a novel inhibitor of the yeast Ras-cyclic AMP pathway, down-regulates normal but not mutationally activated Ras function.Mol. Cell. Biol. 11: 3894–3904PubMedGoogle Scholar
  30. Legrain P., Chapon C. and Galisson F. 1993 Interactions between PRP9 and SPP91 splicing factors identify a protein complex required in prespliceosome assembly.Genes Dev. 7: 1390–1399PubMedCrossRefGoogle Scholar
  31. Ma J. and Ptashne M. 1987 Deletion analysis of GAL4 defines two transcriptional activating segments.Cell 48: 847–853PubMedCrossRefGoogle Scholar
  32. Maitra P. K. and Lobo Z. 1971a A kinetic study of glycolytic enzyme synthesis in yeast.J. Biol. Chem. 246: 475–488PubMedGoogle Scholar
  33. Maitra P. K. and Lobo Z. 1971b Control of glycolytic enzyme synthesis in yeast by products of the hexokinase reaction.J. Biol. Chem. 246: 489–499PubMedGoogle Scholar
  34. Maitra P. K. and Lobo Z. 1978 Reversal of glycolysis in yeast.Arch. Biochem. Biophys. 185: 535–543PubMedCrossRefGoogle Scholar
  35. Miller J. H. 1972Experiments in molecular genetics (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)Google Scholar
  36. Moore P. A., Sagliocco F. A., Wood R. M. and Brown A. J. P. 1991 Yeast glycolytic mRNA are differentially regulated.Mol. Cell. Biol. 11: 5330–5337PubMedGoogle Scholar
  37. Nishizawa M., Araki R. and Teranishi Y. 1989 Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvale kinase gene of the yeastSaccharomyces cerevisiae.Mol. Cell. Biol. 9: 442–451PubMedGoogle Scholar
  38. Sambrook J., Fritsch E. F. and Maniatis T. 1989Molecular cloning: A laboratory manual, second edition (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)Google Scholar
  39. Santangelo G. M. and Tornow J. 1990 Efficient transcription of the glycolytic geneADH1 and three translational component genes requiresGCR1 product, which can act through TUF/GRF/RAP binding sites.Mol. Cell. Biol. 10: 859–862PubMedGoogle Scholar
  40. Schaaff I., Green J. B. A., Gozablo D. and Hohmann S. 1989 A deletion of thePDC1 gene for pyruvate decarboxylase of yeast causes a different phenotype than previously isolated point mutations.Curr. Genet. 15: 75–91PubMedCrossRefGoogle Scholar
  41. Schmitl H. D., Ciriacy M. and Zimmermann F. K. 1983 The synthesis of yeast pyruvate decarboxylase is regulated by large variations in the messenger RNA level.Mol. Gen. Genet. 192: 247–252CrossRefGoogle Scholar
  42. Schmitt H. D. and Zimmermann F. K. 1982 Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis.J. Bacteriol. 151: 1146–1152PubMedGoogle Scholar
  43. Scott E. W. and Baker H. V. 1993 Concerted action of the transcriptional activators REB1, RAP1, GCR1 in the high-level expression of the glycolytic geneTPII.Mol. Cell. Biol. 13: 534–550Google Scholar
  44. Seeboth P. G., Bohnsack K. and Hollenberg C. P. 1990pdcl mutants ofSaccharomyces cerevisiae give evidence for an additional structuralPDC gene: Cloning ofPDC5, a gene homologous toPDC1.J. Bacteriol. 172: 678–685PubMedGoogle Scholar
  45. Sharp P. M. and Cowe E. 1991 Synonymous codon usage inSaccharomyces cerevisiae.Yeast 7: 657–678PubMedCrossRefGoogle Scholar
  46. Sherman F., Fink G. R. and Hicks J. B. 1979Methods in yeast genetics (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)Google Scholar
  47. Sherman F., Fink G. R. and Hicks J. B. 1986Methods in yeast genetics (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)Google Scholar
  48. Shore D. and Nasmyth K. 1987 Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements.Cell 51: 721–732PubMedCrossRefGoogle Scholar
  49. Stanway C., Mellor J., Ogden J. E., Kingsman A. J. and Kingsman S. M. 1987 The UAS of the yeastPGK gene contains functionally distinct domains.Nucleic Acids Res. 15: 6855–6873PubMedCrossRefGoogle Scholar
  50. Strathmann M., Hamilton B. A., Mayeda C. A., Simon M. I., Meyerowitz E. M. and Palazollo M. J. 1991 Transposon-facilitated DNA sequencing.Proc. Natl. Acad. Sci. USA 88: 1247–1250PubMedCrossRefGoogle Scholar
  51. Uemura H. and Fraenkel D. G. 1990gcr2, a new mutation affecting glycolytic gene expression inSaccharomyces cerevisiae.Mol. Cell. Biol. 10: 6389–6396PubMedGoogle Scholar
  52. Uemura H. and Jigami Y. 1992 Role of GCR2 in transcriptional activation of yeast glycolytic genes.Mol. Cell. Biol. 12: 3834–3842PubMedGoogle Scholar
  53. Uemura H., Shiba T., Paterson M., Jigami Y. and Tanaka H. 1986 Identification of a sequence containing the positive regulatory region ofSaccharomyces cerevisiae geneENO1.Gene 45: 67–75PubMedCrossRefGoogle Scholar
  54. Vollrath D., Davis R. W., Connelly C. and Heiter P. 1988 Physical mapping of large DNA by chromosome fragmentation.Proc. Natl. Acad. Sci. USA 85: 6027–6031PubMedCrossRefGoogle Scholar
  55. Walton E. F., Carter B. L. A. and Pringle J. R. 1979 An enrichment method for temperature-sensitive and auxotrophic mutants of yeast.Mol. Gen. Genet. 171: 111–114CrossRefGoogle Scholar
  56. Wright A. P. H., Png H.-L. and Hartley B. S. 1989 Identification of a new gene required for full pyruvate decarboxylase activity inSaccharomyces cerevisiae.Curr. Genet. 15: 171–175PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1994

Authors and Affiliations

  • V. Raghuram
    • 1
  • Z. Lobo
    • 1
  • P. K. Maitra
    • 1
  1. 1.Molecular Biology UnitTata Institute of Fundamental ResearchBombayIndia

Personalised recommendations