Journal of Genetics

, Volume 67, Issue 1, pp 37–42 | Cite as

Segregation characteristics of multiple chromosomes ofAzotobacter vinelandii

  • S. H. Phadnis
  • G. P. Dimri
  • H. K. Das


The genome ofAzotobacler vinelandii has been taggedin vivo with transposons. The cells have then been allowed to divide and the pattern of segregation of the genomes has been studied. The results suggest the presence of multiple (possibly identical) copies of the genome inA. vinelandii. Only a fraction of the total number of genomes seem to have been tagged with transposon and an equilibrium between alleles of the same gene with and without the transposon was evident during random segregation.


Azotobacter vinelandii multiple genomes segregation of genomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyer H W and Roullard-Dussiox D 1969 A complementation analysis of the restriction and modification of DNA inEscherichia coli.J. Mol. Biol. 41: 459–472PubMedCrossRefGoogle Scholar
  2. Denhardt D 1976 A membrane filter technique for the detection of complementary DNA.Biochem. Biophys. Res. Commun. 23: 641–646CrossRefGoogle Scholar
  3. Kahn M, Kolter R, Thomas C, Figurski D, Meyer R, Remaut E and Helinski D R 1979 Plasmid cloning vehicles derived from plasmids Col El, F, R6K and RK2. InMethods in enzymology (ed.) R Wu (New York: Academic Press) vol. 68, pp. 268–280Google Scholar
  4. Medhora M, Phadnis S H and Das H K 1983 Construction of a gene library from the nitrogen-fixing aerobeAzolobacter vinelandii.Gene 25: 355–360PubMedCrossRefGoogle Scholar
  5. Page W J and Sadoff H L 1976 Physiological factors affecting transformationof Azolobacter vinelandii.J. Bacteriol. 125: 1080–10877PubMedGoogle Scholar
  6. Phadnis S H and Das H K 1987 Use of the plasmid pRK 2013 as a vehicle for transposition inAzolobacter vinelandii.J. Biosci. 12: 131–135CrossRefGoogle Scholar
  7. Ramos J L and Robson R L 1985 Isolation and properties of mutants ofAzolobacter chroococum defective in aerobic nitrogen fixation.J. Gen. Microbiol. 131: 1449–1458Google Scholar
  8. Rigby P W J, Dieckmann M, Rhodes C and Berg P 1977 Labelling deoxyribonucleic acid to high specific activityin vitro by nick translation with DNA polymerase 1.J. Mol. Biol. 113: 237–251PubMedCrossRefGoogle Scholar
  9. Sadoff H L, Berke E and Loperfido B 1971 Physiological studies of encystment inAzolobacter vinelandii.J. Bacteriol. 105: 185–189PubMedGoogle Scholar
  10. Sadoff H L, Shimel B and Ellis S 1979 Characterization ofAzolobacter vinelandii deoxyribonucleic acid and folded chromosomes,J. Bacteriol. 138: 871–877PubMedGoogle Scholar
  11. Shah V K, Davis L C, Gordon J K, Orme-Johnson W H and Brill W J 1973 Nitrogenase III. Nitrogenaseless mutants ofAzotobacter vinelandii. Activities, cross reactions and EPR spectra.Biochim. Biophys. Acta 292: 246–255PubMedCrossRefGoogle Scholar
  12. Southern E M 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98: 503–517PubMedCrossRefGoogle Scholar
  13. Thomas P S 1980 Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl. Acad. Sci. USA 77: 5201–5205PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1988

Authors and Affiliations

  • S. H. Phadnis
    • 1
  • G. P. Dimri
    • 1
  • H. K. Das
    • 1
  1. 1.Genetic Engineering Unit, School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations