Folia Microbiologica

, Volume 5, Issue 2, pp 100–104 | Cite as

Composition of capsular polysaccharides of smooth and rough types of colonies of azotobacter chroococcum

  • V Vančura


Capsular polysaccharides of smooth and rough types of colonies of different strains ofAzotobacter chroococcum were analyzed. In polysaccharide hydrolysates the following compounds were detected: galacturonie acid, glucosamine, galactose, glucose, arabinose, fructose, xylose, ribose, rhamnose, deoxy-ribose and another unidentified deoxy-sugar. The smooth types of colonies differ from the rough ones in containing different amounts of galacturonic acid and of galactose in their polysaccharide. In the smooth type there is more galacturonic, acid, in the rough ones there is more galactose.


Polysaccharide Xylose Glucosamine Uronic Acid Galacturonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Состав capsular полисах аридов гладких и г рубыйвиды колоний azotobacter chroococcum


полисахаридов г ладких и грубый ви дов колоний различ ных штаммовиз Azotobacter chroococcum были проанализиро ваны.В полисахарид ов hydrolysates следующиесое динения были обнар ужены: galacturonie кислота, глюкозамина, галак тозы, глюкозы, arabinose, фрук тоза, xylose, рибоза, rhamnose deoxy-ри боза и еще один неоп ознанный deoxy-сахар. Гла дких типов колоний отличаются от бурн ого в сдерживании различное количес тво galacturonic кислота и гал актозы в их полисах аридов.В гладких ти па есть более galacturonic, кисл оты в бурного это еще не всегалактозы.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bradley, D. B., Sieling, D. H.:Effect of organic anions and sugars on phosphate precipitation by iron and aluminium as influenced by pH. Soil Sci. 76: 175, 1953.CrossRefGoogle Scholar
  2. Claus, D., Wittmann, H., Rippel-Baldes, A.:Untersuchungen über die Zusammensetzung von Bakterienschleimen und deren Lösungsvermögen gegenüber schwerlöslichen anorganischen Verbindungen. Arch. Mikrobiol. 29: 169, 1958.PubMedCrossRefGoogle Scholar
  3. Dische, Z.:A specific color reaction for glucuronic acid. J. biol. Chem. 171: 725, 1947.PubMedGoogle Scholar
  4. Edward, J. T., Waldron, D. M.:The detection of deoxy-sugars, glycals and methylpentoses in paper partition chromatography. J. chem. Soc. 3631, 1952.Google Scholar
  5. Elson, L. A., Morgan, W. T. J.:A colorimetric method for the determination of glucosamine and chondrosamine. Biochem. J. 27: 1824, 1933.PubMedGoogle Scholar
  6. Forsyth, W. G. C., Webley, D. M.:The synthesis of polysaccharides by bacteria isolated from soil. J. gen. Microbiol. 3: 395, 1949.PubMedGoogle Scholar
  7. Green, S. R., Stone, J.:Fermentability of wort trisaccharid, a factor in variable attenuations. Wallerstein Lab. Gomm. 15, 51: 347, 1952.Google Scholar
  8. Chesters, G., Attoe, J., Allen, O. N.:Soil aggregation in relation to various soil constituents. Soil Soi. Soc. Amer. Proc. 21: 272, 1957.Google Scholar
  9. Lawson, G. J., Stacey, M.:Observations on the structure of the specific polysaccharide of Azoto- bacter chroococcum. Biochem. J. 46: XIII, 1950.Google Scholar
  10. Lawson, G. J., Stacey, M.:Immunopolysaccharides. Part I.Preliminary studies of a polysaccharide from Azotobacter chroococcum, containing a uronic acid. J. chem. Soc. 1925, 1954.Google Scholar
  11. Leach, J. G., Lilly, V. G., Wilson, H. A., Purvis, M. R.:Bacterial polysacccharides: The nature and function of the exúdate produced by Xanthomonas phaseoli. Phytopathology 47: 113, 1957.Google Scholar
  12. Martin, J. P.:Some observations on the synthesis of polysaccharides by soil bacteria. J. Bact. 50: 349, 1945.PubMedGoogle Scholar
  13. Martin, J. P., Aldrich, D. G.:Influence of soil exchangeable cation ratios on the aggregating effects of natural and synthetic soil conditioners. Soil Sci. Soc. Amer. Proc. 19: 50, 1955.Google Scholar
  14. Martin, J. P., Waksman, S. A.:Influence of microorganisms on soil aggregation and erosion. Soil Sci. 50: 29, 1940.CrossRefGoogle Scholar
  15. Nelson, N.:A photometric adaptation of the Somogyi method for the determination of glucosa. J. biol. Chem. 153: 375, 1944.Google Scholar
  16. Norman, A. G., Bartholomew, W. V.:The chemistry of soil organic matter: I. Distribution of uronic carbon in some soil profiles. Soil Sci. 56: 143, 1943.CrossRefGoogle Scholar
  17. Partridge, S. M.:Aniline hydrogen phthalate as a spraying reagent for chromatography of sugars. Nature 164: 443, 1949.PubMedCrossRefGoogle Scholar
  18. Quinnell Clara, M., Knight, S. G., Wilson, P. W.:The polysaccharide produced by Azotobacter indicum. Can. J. Microbiol. 3: 277, 1957.CrossRefGoogle Scholar
  19. Sevag, M. G., Lackman, B. D., Smolens, J.:The isolation of the components of strepcoccal nucleo- proteins in serologically active form. J. biol. Chem. 124: 425, 1938.Google Scholar
  20. Somogyi, M.:A new reagent for the determination of sugars. J. biol. Chem. 160: 61, 1945.Google Scholar
  21. Stoffyn, P. J., Jeanloz, R. W.:Identification of amino sugars by paper chromatography. Arch. Biochem. Biophys. 52: 373, 1954.CrossRefGoogle Scholar
  22. Vančura, V., Macura, J., Fischer, O., Vondráček, J.:The relation of Azotobacter to the root system of barley. Fol. microbiol. 4: 119, 1959.CrossRefGoogle Scholar
  23. Zaitseva, G. N., Balozersky, A. N.:Chemistry of azotobacter. VI. Investigation of the carbohydrate composition of A. agile 22 D related to the age of culture. Mikrobiologiya 27: 416, 1958Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1960

Authors and Affiliations

  • V Vančura
    • 1
  1. 1.Department of MicrobiologyInstitute of Biology, Czechoslovak Academy of SciencesPrague

Personalised recommendations