Folia Microbiologica

, Volume 26, Issue 5, pp 417–421 | Cite as

Inhibitory Action of Pig Alpha-Fetoprotein Early Activated Thymocyte Surface trohugh Na+,K+-Adenosinetriphosphatase

  • H. Kovářů
  • F. Kovářů


An immunomodulatory effect of pig alpha-fetoprotein (AFP) on early phytohaemagglutinin (PHA)-stimulated intact thymocytes from piglets was analyzed. The activity of surface-localized Na+, K+-adenosinetriphosphata sewas estimated, as the early reaction of mitogen-stimulated T-lymphocytes. A high inhibition of PHA-stimulated enzyme activity was found in the presence of AFP. The reaction was dependent on PHA concentration when using a constant AFP concentration. The highest AFP-induced decrease in PHA-induced Na+, K+-ATPase activity was 72 %. AFP was isolated by a new technique based on salting out in ammonium sulphate and acetate buffer solutions. A gentle, simple and rapid procedure makes it possible to obtain AFP in a high degree of purity with preserved biological activity. The presented results can contribute to understanding the molecular aspects of AFP immunoregulation of lymphocyte reactivityin vitro.


ATPase Activity Ammonium Sulphate Acetate Buffer Solution Adenosinetriphosphatase Basal Enzyme Activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpert E., Yachnin S., Aueb I.O.: Effects of alpha-fetoprotein (AFP) on lymphocyte functionin vitro, p. 165 in F.-G. Lehmann (Ed.):Carcinoembryonic Proteins, Vol. I. Elsevier/North Holland Biomed. Press, Amsterdam 1979.Google Scholar
  2. Averdunk R., Müller J., Wenzel B.: Untersuchungen über den Mechanismus der Aktivierung der Lymphocytenmembran-ATPasen durch Concanavalin A.Clin.C’hem.Clin.Biochem. 14, 339 (1976).Google Scholar
  3. Carlsson R.N.K., Ingvarsson B.I., Karlsson B.W.: Isolation and characterization of alpha-foetoprotein from foetal pigs.Int.J.Biochem. 7, 13 (1976).CrossRefGoogle Scholar
  4. Frieden C.: Slow transitions and hysteretic behavior in enzymes.Ann.Rev.Biochem. 48, 471 (1979).PubMedCrossRefGoogle Scholar
  5. Goeken N.E., Paemely M.J., Thompson J.S.: Immunosuppressive activity of isolated rat and human fetoproteins.Immunol.Commun. 7, 125 (1978).PubMedGoogle Scholar
  6. Kovářů F., Stožický V., Kbtjml J., Dlabač V., Donát J., Novotná J.: Experimental surgery in the foetal period of mammals.Acta Veter. (Brno), Suppl.3, 1 (1972).Google Scholar
  7. Kovářů F., Pospísil M., Trebichavský I., Jabosková L., Kostka J., Kovářů H., Hofman J.: Some immunoregulatory properties of pig alpha-fetoprotein, p. 178 inProc. 4th Eur.Immunol.Meet., Budapest 1978a.Google Scholar
  8. Kovářů F., Pospíšil M., Tbebichavský I., Hofman J., Kostka J.: Localization and some biological properties of pig alpha-fetoprotein.Scand.J.Immunol. 8, Suppl. 8, 279 (1978b).Google Scholar
  9. Kovářů H., Kovářů F.: Mitogen-induced changes of ATPase activity during development of pig thymus, p. 21 inProc. 4th Eur.Immunol.Meet., Budapest 1978.Google Scholar
  10. Kovářů H., Kovářů F., Mandel L.: Membrane-bound enzymes of lymphoid tissues. II. Mitogen and antigen effects on ATPase and γ-glutamyl-transpeptidase activities of intact cells of germfree and conventional pigs.Folia Microbiol. 24, 75 (1979a).Google Scholar
  11. Kovářů H., Kovářů F., Pospíšil M., Mandel L.: Phytohaemagglutinin interaction with pig thymus cells. The effect of breed differences, ontogenetic development and germfree conditions on Na+K+-ATPase activity.Folia Biol. 25, 413 (1979b).Google Scholar
  12. Kovářů H., Kovářů F.: Role of surface enzymes on mitogeneic and allogenic interactions of brain cortex and spleen cells of mice. Simple and high yield isolation of spleen lymphocytes.Folia Biol. 35, 415 (1979).Google Scholar
  13. Kovářů H., Kovářů F.: Early immunoregulatory role of pig alpha-fetoprotein in mitogenic stimulation of pig lymphocytes, p. 182 inProc.Int.Pig Veter.Soc.Congress, Copenhagen 1980.Google Scholar
  14. Kovářů H., Lodik Z.: In vitro K+-effect on ATP and phosphocreatine levels and on Na+K+-ATPase activity of mouse brain cells.Physiol.Bohemoslov. 29, 107 (1980).PubMedGoogle Scholar
  15. Kovářů H., Plášek J., Fišab Z., Kbamoliš J., Kovářů F., Tbebichavský I.: Biochemical and bio-physical aspects of immunomodulatory effect of pig alpha-fetoprotein on early lymphocyte activation.Oncodevelop.Biol.Med., in press (1981).Google Scholar
  16. Lester E. P., Miller J.B., Yachnin S.: Human alpha-fetoprotein: Immunosuppressive activity and microheterogeneity.Immunol.Commun. 7, 137 (1978).PubMedGoogle Scholar
  17. Nobgaabd-Pedebsen B.: Hum n lph -fetoprotein.Scand.J.Immunol., Suppl.4, 1 (1976).Google Scholar
  18. Peck A.B., Murgita R.A., Wigzell H.: Cellular and genetic restrictions in the immunoregulatory activity of alpha-fetoprotein. I. Selective inhibition of anti-la-associated proliferative reactions.J.Exp.Med. 147, 667 (1978).PubMedCrossRefGoogle Scholar
  19. Pospíšil M., Kovářů F., Knobloch V., Kostka M.: Some aspects of mother-foetus relationship studiedin vitro. I. Suppressing effect of amniotie fluid, foetal serum and alpha-fetoprotein of immunological responsivenessin vitro, p. 617 inImmunology of Reproduction, Proc. 3rd Int.Symp. (K. Bratanovet al., Eds), Varna (Bulgaria) 1975.Google Scholar
  20. Resch K.: The role of the plasma membrane in the initiation of lymphocyte activation, p. 109 in J.G. Kaplan (Ed.):The Molecular Basis of Immune Cell Function. Elsevier-North/Holland Biomed. Press, Amsterdam 1979.Google Scholar
  21. Rode H.N., Mäkler B., Loracher A., Resch K.: Functional mosaicism of the lymphocyte plasma membrane. II. Characterization of membrane subfractions of activated thymocytes.Eur.J.Immunol. 9, 402 (1979).PubMedCrossRefGoogle Scholar
  22. Ruoslahti R.E.: Structure-function relationships in alpha-fetoprotein, p. 153 in F.-G. Lehmann (Ed.):Carcino-Embryonic Proteins, Vol. I. Elsevier-North/Holland Biomed.Press, Amsterdam 1979.Google Scholar
  23. Sell S.: Alphafetoprotein, p. 249 in S. Sell (Ed.):Cancer Markers. Humana Press, Clifton (USA) 1980.Google Scholar
  24. Smith C.J.P., Kelleher P.C.: Alpha-fetoprotein molecular heterogeneity. Physiological correlations with normal growth, carcinogenesis and tumor growth.Biochim.Biophys.Acta 605, 1 (1980).PubMedGoogle Scholar
  25. Weekb B.: Crossed immunoelectrophoresis, p. 47 in N.H. Axelsen, J. Kroll, B. Weeke (Eds):Manual of Quantitative Immunoelectrophoresis. Universitetsforlaget, Oslo —Bergen—Tromsø 1973.Google Scholar
  26. Yaohnin S., Lester E.: Inhibition of human lymphocyte transformation by human alpha-foetoprotein (HAFP); comparison of foetal and hepatoma HAFP and kinetic studies ofin vitro immunosuppression.Clin.Exp.Immunol. 26, 484 (1976).Google Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1981

Authors and Affiliations

  • H. Kovářů
    • 1
  • F. Kovářů
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations