Statistical Papers

, Volume 39, Issue 4, pp 361–375 | Cite as

Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test

  • Thomas Friedrich
  • Helmut Schellhaas


Two recursive schemes are presented for the calculation of the probabilityP(g(x)S n (x)≤h(x) for allx∈®), whereS n is the empirical distribution function of a sample from a continuous distribution andh, g are continuous and isotone functions. The results are specialized for the calculation of the distribution and the corresponding percentage points of the test statistic of the two-sided Kolmogorov-Smirnov one sample test. The schemes allow the calculation of the power of the test too. Finally an extensive tabulation of percentage points for the Kolmogorov-Smirnov test is given.

Key words

Kolmogorov-Smirnov one sample test distribution of the test statistic percentage points power recursive scheme for computation 

1991 Mathematics Subject Classification

Primary 62G30 Secondary 62G10 62Q05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birnbaum, Z.W., Tingey, F.H. (1951). One sided confidence contours for probability distribution functions. Ann. Math. Statistics 22, 592–596CrossRefMathSciNetMATHGoogle Scholar
  2. Birnbaum, Z.W. (1952). Numerical tabulation of the distribution of Kolmogorov’s statistic for finite sample size. Journ. Amer. Statist. Assoc. 47, 425–441CrossRefMathSciNetMATHGoogle Scholar
  3. Epanechnikov, V.A. (1968). The significance level and power of the two-sided Kolmogorov test in the case of small sample sizes. Theory of Probability and its Applications 13, 686–690CrossRefGoogle Scholar
  4. Gibbons, J.D., Chakrabarti, S. (1992). Nonparametric statistical inference. 3rd ed., Marcel Dekker, New YorkMATHGoogle Scholar
  5. Kolmogoroff, A.N. (1933). Sulla determinazione empirica di una legge di distributione. Giornale dell’Instituto Italiano degli Attuari 4, 83–91Google Scholar
  6. Miller, L.H. (1956). Table of percentage points of Kolmogorov statistics. Journ. Amer. Statist. Assoc. 51, 111–121CrossRefGoogle Scholar
  7. Noé, M. (1972). The calculation of distributions of two-sided Kolmogorov-Smirnov type statistics. Ann. Math. Statist. 43, 58–64.CrossRefMathSciNetMATHGoogle Scholar
  8. Reis, R.-D. (1989). Approximate distributions of order statistics. Springer-Verlag, New YorkGoogle Scholar
  9. Steck, G.P. (1971). Rectangle probabilities for uniform order statistics and the probability that the empirical distribution function lies between two distribution functions. Ann. Math. Statist. 42, 1–11CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Thomas Friedrich
    • 1
  • Helmut Schellhaas
    • 1
  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations