Folia Microbiologica

, Volume 31, Issue 4, pp 282–287 | Cite as

Saprophytic production of Clavine alkaloids and activity of Hydroxymethylglutaryl-CoA reductase

  • V. Křen
  • S. Pažoutová
  • V. Rylko
  • Z. Řeháček


In submergedClaviceps cultures the activity of hydroxymethylglutaryl-CoA reductase preceded the increase of alkaloid production and of sterol content. During the first alkaloid phase, cell mevalonate was involved in the biosynthesis of both alkaloids and steroids. In the second production phase, it was predominantly used for alkaloid synthesis. Hydroxymethylglutaryl-CoA reductase appears to be a suitable target for physiological manipulation to increase clavine alkaloid yields.


Alkaloid Mevalonate Submerged Culture Ergot Alkaloid Mevalonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



3-hydroxy-3-methylglutarylcoenzyme A


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birch A.J., McLouglin B.J., Smith H.: The biosynthesis of the ergot alkaloids.Tetrahedron Lett. 7, 1–3 (1960).CrossRefGoogle Scholar
  2. Cardemil E., Jabalaquinto A.M.: The mechanism of action of mevalonate-5-pyrophosphatedecarboxylase.Trends Biochem.Sci. 8, 7–8 (1983).CrossRefGoogle Scholar
  3. Dickerson A.G., Mantle P.G., Szczyrbak C.A.: Autolysis of extracellular glucans producedin vitro by a strain ofClaviceps fusiformis.J.Gen.Microbiol. 60, 403–415 (1970).PubMedGoogle Scholar
  4. Feingold K.R., Wiley M.H., Macrae G., Kaysen G., Schoenfeld P.Y., Siperstein M.D.: The effect of uremia on circulating mevalonate metabolism in rats.Metabolism 32, 215–296 (1983).PubMedCrossRefGoogle Scholar
  5. Floss H.G.: Biosynthesis of ergot alkaloids: Stereochemistry of hydrogen elimination from C-4 of mevalonate.Chem.Commun. 804–805 (1967).Google Scholar
  6. Hall R.N.: N6-(Δ2-Isopentenyl)adenosine: chemical reactions, biosynthesis and fuction of tRNA.Progr.Nucl.Acid Res.Mol.Biol. 10, 57–86 (1970).CrossRefGoogle Scholar
  7. Hart M.C., Emerson H.: β-Ergostenol.J.Amer.Chem.Soc. 54, 1070–1074 (1932).CrossRefGoogle Scholar
  8. Henry S.A.: Membrane lipids of yeast: Biochemical and genetic studies, pp. 101–158 inThe Molecular Biology of the Yeast Saccharomyces (J.N. Strathern, E.W. Jones, J.R. Broach, Eds). Cold Spring Harbor Lab., New York 1982.Google Scholar
  9. Křen V., Pažoutová S., Rylko V., Sajdl P., Wurst M., Řeháček Z.: Extracellular metabolism of sucrose in a submerged culture ofClaviceps purpurea: Formation of monosaccliarides and clavine alkaloids.Appl.Environ.Microbiol. 48, 826–829 (1984).PubMedGoogle Scholar
  10. Křen V., Řezanka T., Sajdl P., Řehaček Z.: Identification of sterols in submerged cultures of the differentClaviceps species.Biochem. Physiol. Pflanzen. 181, 505–510 (1980).Google Scholar
  11. Lee S.L., Floss H.G., Heinstein P.: Purification and properties of dimethylallyl pyrophosphate: tryptophan dimethylallyltransferase, the first enzyme of ergot alkaloid biosynthesis inClaviceps sp. SD 58.Arch.Biochem.Biophys. 177, 84–94 (1976).PubMedCrossRefGoogle Scholar
  12. Longley R.P., Rose A.H., Knights B.A.: Composition of the protoplast membrane fromSaccharomyces cerevisiae.Biochem.J. 108, 401–412 (1968).PubMedGoogle Scholar
  13. Pažoutová S., Flieger M., Sajdl P., ŘeháČek Z., Taisinger J., Bass A.: The relationship between intensity of oxidative metabolism and predominance of agroclavine or elymoelavine in submergedClaviceps purpurea cultures.J.Nat.Prod. 44, 225–235 (1981).CrossRefGoogle Scholar
  14. Pažoutová S., Slokoska L.S., Nikolova N., Angelov T.I.: Sugar and phosphate metabolism and alkaloid production phases in submerged cultures of twoClaviceps strain.Evr.J.Appl. Microbiol.Biotechnol. 16, 208–211 (1982).CrossRefGoogle Scholar
  15. Quain D.E., Haslam J.H.: The effects of catabolite depression on the accumulation of steryl esters and the activity of β-hydroxymethylglutaryl-CoA reductase inSaccharomyces cerevisiae.J.Gen.Microbiol. 111, 343–351 (1979).Google Scholar
  16. Quesney-Huneeus V., Galick H.A., Siperstein M.D.: The dual role of mevalonate in the coll cycle.J.Biol.Chem. 258, 378–385 (1983).PubMedGoogle Scholar
  17. Řeháček Z.: New trends in ergot alkaloid synthesis.Process Biochem. 18, 22–30 (1983)Google Scholar
  18. Robebs J.E., Robertson L.W., Hornemann K.M., Jindra A., Floss H.G.: Physiological studies on the induction of alkaloid synthesis by tryptophan and its inhibition by phosphate.J.Bacteriol. 112, 791–796 (1972).Google Scholar
  19. Robertson W.L., Robbers J.E., Floss H.G.: Some characteristic of tryptophan uptake inGlaviceps species.J.Bacterial. 114, 208–219 (1973).Google Scholar
  20. Schmauder H.P., GrögeeD.: Untersuchungen zur Aromatenbiosynthese und AlkaloidbildungClaviceps in Arten.Biochem.Physiol.Pflanzen 164, 41–47 (1973).Google Scholar
  21. Schmauder H.P., Gröger D.: Chitinbestimmung inClaviceps.Biockem. Physiol. Pflanzen 173, 139–145 (1978).Google Scholar
  22. Wurst M., Flieger M., ŘeháČek Z.: Analysis of ergot alkaloids by high-performance liquid chromatography. I. Clavines and simple derivatives of lysergic acid.J.Chromatogr. 150, 477–483 (1978).CrossRefGoogle Scholar

Copyright information

© Institute of Microbiology, Academy of Sciences of the Czech Republic 1986

Authors and Affiliations

  • V. Křen
    • 1
  • S. Pažoutová
    • 1
  • V. Rylko
    • 1
  • Z. Řeháček
    • 1
  1. 1.Institute of MicrobiologyCzechoslovak Academy of SciencesPrague 4

Personalised recommendations